

A CONVERSATIONAL PROBLEM SOLVING SYSTEM

REPRESENTED AS PROCEDURES WITH

NATURAL LANGUAGE CONCEPTUAL STRUCTURE

Laurence Thomas Shafe

Ph.D. Thesis

Queen Mary College

University of London

1976

1

ABSTRACT

PIDGIN is a conversational computer programming language with a

structure that facilitates the construction of computer systems that accept

statements, answer questions and obey commands in natural language. It also

incorporates a deductive problem-solving capability to enable such systems to

solve non-trivial application problems. PIDGIN is intended to form a base for

natural language problem-solving systems that can be used directly by the

people with the problems, for example, designers, managers, engineers and

scientists.

Because any system constructed using PIDGIN consists entirely of

PIDGIN statements it may be conversationally updated to alter fundamentally

its capabilities within the limit of the basic PIDGIN primitives. It also enables

the system to answer questions about its own structure and workings and so

assist the user to improve its capabilities. By working with the system in this

way the user should be motivated to teach the system new heuristics for

improving its performance.

The syntax of PIDGIN is based on the representation language

developed by R. Schank and the semantics on the PLANNER language of C.

Hewitt. PIDGIN incorporates some novel and powerful programming features

such as success-failure backtracking; meaning-invoked rules; meaning

restricted variables; the ability to specify the requirements and results of any

command; the ability to generate programs automatically using this

information; and the ability to generate automatically knowledge about the

system's workings.

The design of PIDGIN has been worked out in detail and a subset of the

language has been implemented using the programming language POP-2. The

2

limitations and possibilities of PIDGIN have been investigated by

working through the design of a chess endgame system, and the translation

between English and PIDGIN has been investigated and PIDGIN equivalents for

many semantically difficult English constructions have been worked out.

3

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Alan Bond and my former

supervisor Professor Peter Landin for allowing me to develop the ideas in this

thesis.

I am indebted and deeply grateful to Dr. Tom Westerdale for cultivating

my initial enthusiasm and for helping me to unify my evolving ideas by long

and painstaking discussion.

I am grateful to Professor Donald Michie for enabling me to visit the

School of Artificial Intelligence at Edinburgh University and for suggesting the

chess endgame problem. I would further like to thank Dr. Sou Tan for providing

me with one of his chess endgame programs.

I am appreciative of the help given to me during 1974 by Dr. Eric

Wagner and of the continual help and support maintained by Dr. Rod Macbeth,

Dr. Ken MacCallum and David Mott.

Finally, I would like to thank all those authors whose books and articles

have been the source and inspiration of my work, especially R. Schank, T.

Winograd, W.V.O. Quine, L. Wittgenstein, G. Spencer Brown and P.M. Roget.

And Val, for putting up with it for so long.

4

CONTENTS

CHAPTER 1 INTRODUCTION

 1.1 Outline

 1.2 A History of Question-Answering Systems

 1.2.1 Quillian's Semantic Memory

 1.2.2 Schank's Dependency Representation

 1.2.3 Winograd's Procedural Deep Structure

 1.2.4 Abelson's Belief Structures

CHAPTER 2 PIDGIN - A REALISATION LANGUAGE

 2.1 The PIDGIN Language

 2.1.1. The Strict PIDGIN Language

 A. Associative Backtrack Computer

 B. Strict PIDGIN Syntax

 2.1.2 The Input PIDGIN Language

 2.1.3 Examples of PIDGIN

 2.2 The PIDGIN System

 2.2.1 The Components of the System

 A. Associative Backtrack Computer

 B. PIDGIN

 C. Translator

 D. Knowledge Base

 2.2.2 The Initia1isation of the System

 A. Defining the PIDGIN System

 B. Defining the English Translator

 C. Creating the Knowledge Base

5

 2.2.3 The Construction of the System

 A. The Processor

 B. The Memory

 1. Immediate Memory
 2. Long-term Memory

 C. The Translator

 2.3 The PIDGIN Concepts

 A. The Connectors

 1. SUGGEST
 2. ENABLE

 3. PRODUCE
 4. CAUSE
 5. THEREFORE

 6. THROUGH
 7. WHILE
 8. IF

 B. The Acts

 1. BE

 2. BECOME
 3. COGITATE
 4. DO

 5. IDENTIFY
 6. MOVE
 7. PASS

 8. PERCEIVE
 9. TRANSFER
 10. TRANSMIT

 C. Actors

 1. Entity and Group Actors

 2. Quantifiers
 3. Attributes
 4. Specifiers

 D. Modifiers

 E. Combining Concepts

6

 2.4 The PIDGIN Statement

 2.4.1 Assertions, Questions and Commands

 2.4.2 Substitution Rules

 A. The Matcher

 B. Actor Matching

 1. Combination of Actors
 2. Quantifier Matching
 3. Attribute Matching

 4. Specifier Matching

 C. Modifier Matching

 D. Binding Statements

 2.4.3 Deduction

 2.4.4 Problem Solving

 A. Notation

 B. Scheming and Planning

 2.4.5 Teaching and Learning

CHAPTER 3 EIKASIA - A PIDGIN BASED CHESS SYSTEM

 3.1 A History of Chess Systems

 3.2 A Description of the Endgame Problem

 3.3. PIDGIN and the Endgame

 A. PIDGIN Particular Extensions

 1. Chess Concepts
 2. Board States
 3. Board Actions

 4. Game Playing

 B. A Typical Endgame

7

CHAPTER 4 THE TRANSLATION OF A SUBSET OF ENGLISH

 4.1 Introduction

 4.2 The Analysis of English

 4.2.1 The Analysis Process

 A. Interna1isation

 B. Explication

 C. Analysis

 4.2.2 Word Analysis

 A. Divided Reference

 1. Mass Terms
 2. General Terms
 3. Singular Terms

 4. Composite Terms

 B. Ambiguity and Vagueness

 4.2.3 Sentence Analysis

 A. Predication

 B. Identity

 C. Time

 D. Ambiguity

 E. Opacity

 4.2.4 Examples of Analysis

 4.3 The Synthesis of English

 A. Generating Statements

 B. Translating Statements into English

 4.4 Conversation

CHAPTER 5 SUMMARY

8

APPENDIX I IMPLEMENTATION

 A. ABC Implementation

 1. The ABC Primitives
 2. The ABC Driver
 3. The MABL Assembler

 B. The PIDGIN Implementation

APPENDIX II THE KNOWLEDGE BASE

 A. Primary Knowledge

 B. General Knowledge

 C. Specialist Knowledge

 D. The Dictionary

APPENDIX III BIBLIOGRAPHY

9

10

CHAPTER 1 INTRODUCTION

1.1. Outline

The world confronts us with a series of increasingly complex problems.

Computers are helping us to solve these problems by taking over more and

more of the mundane clerical work. Because of their speed, accuracy and

efficiency they enable repetitious and tedious clerical work to be handled

automatically. But computers can also be used to manipulate complex patterns

and because of this have been used to model structures and control and

optimize processes, all of which previously required skilled personnel. This is

because much time and effort has gone into the precise, formal solution of each

of these problems.

Research is being done into the way in which complex problems can be

solved by computers. A major part of AI (Artificial Intelligence) research work

has been involved with this type of investigation. One particular branch of the

investigation is concerned with creating a computer system which understands

natural languages, such as English. Achievements in this area would have many

applications, for example:

i) If computers "understood" English they would become available to

a far wider range of users, such as managers and designers, people

without the time or inclination to learn a conventional programming

language.

ii) People would be able to help computers solve difficult problems by

interacting with them in some natural language.

iii) The linguistic nature of much information suggests many

applications for computer programs that understand language. For

11

example, information retrieval, index construction, machine

translation, précis writing and report writing.

iv) Voice communication with computers would be of benefit in many

applications especially if the person did not need to learn a special

language.

v) Language itself is one of the most complex of human abilities and

investigating its structure may help us understand more about the way

the human brain works.

This thesis is concerned mostly with the first two points above.

It has long been known that the straightforward approach to the

solution of complex problems, such as chess playing, immediately comes up

against what is called the "combinatorial explosion". This is the uncontrollable

increase in the time the computer must take to investigate all the possibilities

of each new step. For example, if a chess program tried to examine ten

different moves for 20 moves ahead, and each move takes one micro-second to

analyse, then it would take about 10 million years to make a single move. One

solution to this problem has been to find ways of rejecting most of the

possibilities. For example, if only six moves ahead were considered the above

chess program would need only one second to make a move. The rules used to

limit the search are called "heuristics". Professor Sir James Lighthill (1973)

states:

"It is important to understand the meaning attached to this adjective

'heuristic' which increasingly permeates the Artificial Intelligence literature: it

means that the program stores and utilises a large amount of knowledge

derived from human experience in solving the type of problem concerned."

12

It is clear then that the investigation of methods for

improving the storage and utilisation of human knowledge is important to AI.

The more human knowledge that can be incorporated in a program the more

the combinatorial explosion can be curtailed and the better the program's

performance will be. Thus it is important to find better ways of allowing humans

to communicate their knowledge and experience to computer programs.

We are used to communicating this information to others using our

natural language. When this type of information needs to be communicated to

computers, however, it must first be translated into a computer language. If

computers could be programmed to extract such, information from natural

language then they could be taught the heuristics necessary to cut down the

combinatorial explosion when solving complex problems.

One approach to this problem is the investigation of computer models

of linguistic memory. M. Ross Quillian (1968) has proposed such a memory

model with a number of attractive features. It is simply constructed with an

appearance analogous to neural networks, yet it has a good inductive ability

and ~ behaviour which corresponds with human linguistic behaviour in areas

such as word association. However, Quillian's "semantic memory" is a static

structure with no deductive or planning capabilities. After some initial attempts

to construct a more comprehensive system based on S. Lamb's stratificational

grammar plus networks analogous to those of Quillian, I abandoned this

approach in favour of a procedure oriented system similar to that of T.

Winograd(1971).

Winograd's system is a complete, working conversational system that

understands English concerned with a simple "world" containing coloured blocks

on a table, plus a crane for moving the blocks. The system will accept new

information about its world, answer questions about the position of the blocks

13

and what is has done to them and obey commands concerned with

moving the blocks around. The idea of setting up a question-answering system

to investigate the problems of language is not new, but the idea of precisely

defining a "toy world" to restrict the language without otherwise arbitrary

restraints and the methods he used to translate and store the assertions,

questions and commands were first brought together in his system. His system

translates English into a tree structure using a syntax analyser based on the

ideas of systemic grammar developed by M.A.K. Halliday.

This structure is then translated into the theorem-proving language

PLANNER. Because the English is translated into PLANNER the full power of this

programming language is available to help it make complex deductions and

create plans. However, Winograd's system is still rigidly limited to its toy-world

and any extension to this would require substantial reprogramming. I hoped to

simplify this problem by setting up a system that used the same language for

the result of syntax analysis, the deductive program and programming the

system.

C. Hewitt's PLANNER programming language (1972) is the deductive

base and "deep structure" of Winograd's system but it was not designed for the

latter purpose. It was designed as a programming language to enable people to

write theorem-proving model-building goal-directed programs. G. Sussman and

others have objected to the way that PLANNER leads the user into writing

programs that thrash around for the solution and they have defined the

language CONNIVER to overcome these objections by removing PLANNER's

automatic backtrack control scheme and providing the user with more primitive

operators. I have defined a language which takes another approach.

The reason that PLANNER programs thrash is that the system does not

know what it is doing. One way to overcome this is to remove the automatic

14

control and force the user to program it explicitly. The approach that

I have taken is to provide the system with more information about what it is

doing so that the automatic control can stop itself thrashing. This I did by

basing a language upon the deep structures of natural language in the form

proposed by R. Schank. The essential difference between this approach and

that of PLANNER and CONNIVER is that the latter are programming languages

designed for people whereas the former is an implementation language for

conversational systems. An implementation language is a language designed to

simplify the problem of implementing some other language, in this case

English. It is not designed specifically as an easy language in which to program

but as a language into which natural language may be easily translated.

However, it is not just a static data-structure like Quillian's semantic memory or

Schank's representation but a deductive goal-directed procedural language like

PLANNER.

R. Schank has been refining a representation for the deep structure of

natural language for a number of years, together with a translation scheme

based on Conceptual Dependency theory. This theory was developed by Schank

as a computer orientated approach to the problem of natural language analysis

and translation. He claims the bulk of what people talk about can be reduced to

his representation. It therefore seems like an ideal base upon which to build a

conversational system. I planned to design a language with a PLANNER-like

control structure" intelligently" directed by a data-base constrained to Schank-

like deep structures. This initial language was called Conceptor. Conceptor was

similar to PLANNER but the patterns were not arbitrary lists but conceptions.

Conceptions were, roughly, one-dimensional representations of Schank's C-

diagrams that is, unambiguous representations of the meaning of natural

language sentences. The introduction of syntactic and semantic restrictions on

the patterns of PLANNER meant that Conceptor had a meaning-directed data-

15

base search, and a meaning-directed invocation of procedures, and

this eliminated some of the thrashing of the system by restricting the matches

found.

However, Conceptor was only a half-way stage. Although it had a data-

base of conceptions the program that manipulated the data-base was separate

from that data-base and still constructed from programming features such as

labels, gotos, if-thens and loops rather than natural language features such as

needs, schemes, states and plans. This meant that the relations between

conceptions could not be manipulated by the program in the same way that the

conceptions themselves could. Replacing these features involved abandoning

the distinction between the data-base and the program and replacing the usual

programming features by features related to natural language. Many

advantages result from taking this step:

The system may answer questions concerned with its own workings. As

the system can explain its current problem-solving rules to the user it becomes

much easier to modify the system conversationally.

Because the problem-solving system is programmed in the same

language that the English input is translated into a conversational user may

extend and modify all parts of the system, not just the data-base.

The translation from natural language is simplified because the artificial

step of translating into a programming language is removed.

The system may be conversationally extended to cope with new

problems.

16

The generation of output is simplified because the system

works in the deep structure of English. For example, all its plans and actions

are expressed in this deep structure.

I have called the language incorporating these ideas PIDGIN. PIDGIN

has been implemented using the programming language ABC, a language that

was specially designed and developed for the task. PIDGIN statements are

either conceptions, with a syntax based on Schank's conceptualizations, or

relations between conceptions, called thoughts. The way in which conceptions

can be related together is based on R. Abelson's (1973) description of how

Schank's notation may be extended to build belief systems. However, Abelson

does not consider how these relations may be made to realise a computer

deductive problem-solving system. I have approached this problem by trying to

implement a chess-endgame program called EIKASIA by combining chess board

predicates and action schemes using relations similar to those discussed by

Abelson. Before discussing the historical background to PIDGIN in more detail I

would like to more clearly define PIDGIN as a computer language. The following

types of language can be distinguished:

(1) Natural languages - used for communication 'between people for

unlimited discourse. E.g. English, Chinese.

(2) Artificial languages - specialised formal languages used for precise

description.

(a) Logic languages - used for precise human communication. E.g.

predicate calculus.

(b) Computer languages - used for man-machine communication.

17

(i) Programming languages - used for algorithm

communication. E.g. Algol, LISP, PLANNER

(ii) Representation languages - used for data or knowledge description.

E.g. Schank's representation

(iii) Realisation languages - used for constructing knowledge

algorithms, a combination of a programming and a representation

language .e.g. PIDGIN

The above division is not meant to be exhaustive or definitive; for

example, Esperanto is an artificial natural language, Algol is used for human

communication. It is merely meant to show the difference between PIDGIN and

other programming languages.

Throughout this thesis when I talk about natural language I am

referring to that part of natural language that can be translated into Schank's

notation, and thus PIDGIN. The extent of this is discussed by Schank (1969b).

Similarly when English is referred to I mean that subset of English that can be

handled by PIDGIN. Just how large this subset is discussed in Chapter 4 and

suggested by the examples throughout the thesis.

This thesis consists' of five chapters numbered from 1 to 5 and three

appendices, I to III. Chapters are divided into sections which are numbered and

can be referred to by chapter.section number (e.g. 1.2, 3.2). Sections are

divided into sub-sections which are numbered (e.g. 1.2.1, 2.3.1); both sections

and sub-sections will be referred to as sections. Sections are divided into

lettered divisions (e.g. A, B, C...) which are further divided 'into numbered

parts (e.g. 1, 2, 3...). Parts are divided into lettered segments (e.g. a, b, c...)

and these into pieces (e.g. (i), (ii), (iii) ...). If a sequence of short points is

given in a section, part or division then piece numbering is used.

18

1.2 A History of Question-Answering Systems

Attempts to set down algorithms for translating English into logic have

been made for hundreds of years. When computers were developed it was

natural to consider using them for this purpose, but the first practical systems

were not developed until about 1960. During the last fifteen years many such

systems have been developed. There have been many different motives for

developing these systems, for example, some are more concerned with the

syntax analysis of English, some with setting up deductive systems, some with

the problem of representing knowledge in computers, some with relating such

systems to other problems such as picture processing or information retrieval,

and others with building complete question-answering systems.

In the brief historical summary below a number of these projects are

described, but although they are presented as separate self-contained units

occurring at a particular time, it must be remembered that they all extended

over a number of years and borrowed heavily from each other. The summary is

extracted from a number of sources but mainly from the summaries of R.F.

Simmons (1965, 1969), the Machine Intelligence series (annually from 1967),

the Proceedings of the International Joint Conference on Artificial Intelligence

(1969, 1971, and 1973) and the following three books:

Computers and Thought, ed. Feigenbaum and Feldman, 1963

Semantic Information Processing, ed. Minsky, 1968

Computer Models of Thought and Language, ed. Schank and Colby,
1973.

One of the earliest papers on question-answering systems was by

McCarthy (1959) and in 1960 one of his students, A.V. Phillips, developed a

working system. It was written in LISP and answered simple questions in a

subset of English. The sentences were analysed by a simple context-free phrase

19

structure analyser into five constituents - subject, verb, object, place

and time; everything else was ignored. To answer a question it made a linear

search through its data-base of stored sentences until a matching entry was

found, which was then output. If no match was found the programs gave up

without attempting to make any deductions. The system was in advance of

some other systems developed at the time in that it could add new sentences

to its data-base as it proceeded and thus it had a simple rote learning ability.

One of the systems with a fixed data-base was developed by B.F. Green

(1961) at Lincoln Laboratories and was called BASEBALL as it could answer

questions about the time, place, teams and score of all the American League

baseball games for one complete season. Questions had to take the form of a

single clause without logical connectives, negation or certain complex relations

such as "most" and "highest". The question was translated into a specification

list which was a pattern that could be matched against the built-in data-base to

find the answer. The system's dictionary contained the part of speech and

"meaning" of most of the words used to ask questions about baseball. There

was no interaction with the user but it did show that with a limited field of

discourse natural language questions could be analysed and answered.

J.L. Darlington (1963) developed a system, in COMIT, that took a

slightly different approach to the problem. Darlington was interested in

translating English into symbolic logic and by this means solving complex

logical problems posed in English by using formal theorem provers. His system

read in typical elementary problems in logic and translated them into

statements in symbolic logic whose universal truth was then tested. The system

was not interactive and the output was restricted to simple built-in phrases or

single word replies.

20

In the same year R.K. Lindsay (1963) published a paper

describing a memory structure called inferential memory. A program written in

IPL-V called SAD-SAM (Sentence Appraiser and Diagrammer, and Semantic

Ana1ysing Machine) accepted sentences in Basic English (Ogden 1933) from

which it extracted information concerning kinship. This information was then

added to one of the family trees the system maintained. Although the program

was not interactive it was a simple matter to extract family relationships from

the tree to answer questions. The system was heavily syntax orientated and

made no use of the semantic information available in the family trees to help it

to analyse the input. Instead it first tried to produce every possible parse tree

and then it used the result to build up the family trees.

A. Newell and R.A. Simon had been interested in computer problem

solving since their work on the logic theory machine (Newell 1957) and by 1963

they had developed a program called GPS (General Problem Solver) that tried

to incorporate their theories on the pyscho1ogy of human thinking into a

working problem solving program. Although it is not a question-answering

system it contains many ideas that were later incorporated in the problem-

solving part of many such systems.

B. Raphael (1968) developed a system called SIR (Semantic

Information Retrieval), in 1964 that was one of the first truly interactive

systems. If asked a question it could not answer directly it asked the user

questions until it could deduce the answer. It accepted as input simple

sentences in anyone of about twenty fixed formats useful for expressing

relationships between objects. The relationships included set membership and

inclusion, left-right position and ownership. They were stored in a semantic

network in which nodes represented objects and labelled links the relationships.

Raphael states as his primary interest the ability to store and utilize relational

21

information and for this reason his system ignored the problem of

analysing general English sentences.

In the same year D.G. Bobrow (1964) developed a system, called

STUDENT that accepted and solved algebra problems posed in a restricted

subset of English. The system was developed to investigate the problem of

building interactive problem solvers. It could be "programmed" with a problem

in English and would ask questions until it could solve the problem. The internal

semantic model was based on one relationship (equality) and five basic

arithmetic functions (from which others could. be constructed). It was more

advanced than many other systems in that new transformations could be

introduced into the running system. At General Electric F. Thompson (1966)

and J. Craig (1966) developed a question-answering system called DEACON.

Thompson investigated formal languages as a basis for a question-answering

base language and Craig developed a working sys tem based on these ideas.

This system used "rings" as the system's primitive data structure and had

interpretation rules defined as programs that manipulated these rings.

Unfortunately the project had to be abandoned through lack of funds.

Based largely on the ideas and theoretical work of McCarthy and his

"Advice Taker" and Raphael's SIR, J .R. Slagle (1965) developed a deductive

question-answering system called DEDUCOM (DEDUctive COMmunicator). It

could answer a wide variety of questions and its deductive power could be

increased by telling it more facts. However, the input had to be carefully

prepared before giving it to DEDUCOM; the facts had to be in the right order,

some redundant facts were required and some facts had to be carefully worded

to enable the correct answer to be deduced.

In 1967 M.R. Quillian completed his thesis on semantic memory. As this

will be described in Section 1.2.1 it will not be further discussed here.

22

In 1962 R.F. Simmons developed a system, in JOVIAL, called

SYNTHEX. This formed the basis of the first Protosynthex system which through

various stages of modification and extension became Protosynthex III (R.M.

Schwarcz and Simmons, 1970). The original system answered questions using

a children's encyclopedia. The text of the encyclopedia was stored on magnetic

tape and analysed whenever a question was asked. The system analysed

questions by separating function words ("the", "do", "is" etc.) from content

words (nouns and verbs). The text was indexed on content words and the

question's content words were used to retrieve all relevant sentences from the

encyclopedia. The sentences retrieved were then reduced in number by

comparing them more carefully with the question. The text of the encyclopedia

was not pre-analysed except for the word index and so the system spent a

large part of its time analysing the text. By 1970 the Protosynthex III system

was a sophisticated deductive question-answering system containing a

formalized data representation language based on triples, a translator to and

from English and the formal language, and a powerful deductive and inference

system.

The system contains many ideas incorporated in PIDGIN. However, it is

not discussed in detail as it did not form part of the historical development of

PIDGIN because I did not read a detailed description of Protosynthex until after

completing the design of PIDGIN. It is thus interesting to note that the

proposals made for removing some of the' limitations of Protosynthex III are

those that form the basis of PIDGIN, namely that the deep structure was not

deep enough and a structure based on Fillmore's case system was suggested;

"how" and "why" questions could not be answered and a system for

automatically adding to the data-base was suggested. Also the system ran into

the combinatorial explosion with large data-bases and to try to solve this, a

basic unit larger than the triple was suggested together with a "partitioned"

23

data-base. PIDGIN has a deeper deep structure based on Schank's

which in turn incorporated an improvement of Fillmore's case system. PIDGIN

does automatically add information to its memory when it answers questions

and makes plans and this information can be used to answer "how" and "why"

questions. PIDGIN also incorporates the two suggestions for reducing the

problem of the combinatorial explosion.

By 1969 Bursta1l and Ambler (Ambler 1969) had developed a system

at the Department of Machine Intelligence and Perception, Edinburgh

University, called QUAC (Question Answerer C). It was a deductive system that

accepted sentences stating a relation between two objects and between other

relations. New relations could also be defined in the system. It accepted

sentences in restricted English and extracted their meaning, and it could also

generate true sentences about the objects it had been told about. It was

written to develop the ideas of Raphael (1968) but still suffered from a lack of

generality. The internal model used by both became too specia1ised though

Jinich (1971) developed the system in a number of interesting ways.

Vigor (1969), also at DMIP, developed a system which, although it was

syntax rather than semantic based did adaptive1y improve its language

capability by conversation. Initially the program has a dictionary containing

about 100 words and six relations. From sentences read it increased the size of

its vocabulary and the range of sentence forms handled. It was originally

developed from a program called GASP. GASP was a hierarchy of subroutines

that returned words in certain classes, e.g. noun-abstract. It was extended and

combined with an English parser called SPUD (Bratley, 196$). SPUD was a

dependency grammar parser. Words are divided into classes - binding (bound

or loose), determinacy (determinate or recursive) and negative dependency

(global or local), and these classes were used to determine where a word could

24

occur in a sentence. The program reads in pieces of text to build up

its memory structures and then randomly generates English sentences from

these structures. The system is thus not really interactive. However, it was

possible to "converse" with it in so far as when the sentence was output the

user could score the result to modify the system's future behaviour.

In the last five years, from 1970, the work of Schank and Winograd is

of most importance to the design of PIDGIN, and both of these are discussed in

the next section. Schank's work has been associated to some extent with the

belief systems developed by Colby (1969a, 1969b, 1973). Colby's system was

originally closely related to J. Weizenbaum's ELIZA (1966) conversational

system. Both of these systems attempted to carryon a conversation by always

keeping the initiative that is by always asking questions and never answering

them. They did this by recognising key words and phrases in the user's replies

and then they used these to generate related questions. Colby went on to

extend his system to incorporate his theories about neurotic human behaviour.

The above computer systems cover the major part of the work that has

formed the basis of the structure of PIDGIN. However, a wide range of other

work motivated the overall design philosophy behind PIDGIN. Of this other

work the most notable is that done in the philosophy of language by L.

Wittgenstein (1922), W.V.O. Quine (1960), M.J. Cresswell (1973), and R.

Montague (1969, 1970 and 1973). This work attempts to describe a logical

notation equivalent to natural language in order to explicate certain difficult

problems that arise in natural languages. It is of most use in relation to PIDGIN

in the way that certain semantic problems are brought out and discussed

because it is important that question-answering systems do not fall into the

associated traps. However, a logical notation is not a programming language

25

and the solutions proposed are therefore difficult to assimilate

directly; they can at best act only as guide lines.

Other related work has been done in the field of the psychology of

language (Carol1 1964, Slobin 1971, Piaget 1929), problem solving (Po1ya

1945), human communication (Chapanis 1975), linguistics (Chomsky 1968,

Lamb 1966), the physiology of the central nervous system (Hebb 1949,

Geschwind 1973) and computer models of memory and cognition (Hunt 1973,

Becker 1973).

1.2.1 Quillian's Semantic Memory

Quillian (1968) showed how knowledge might be stored in a single

interconnected network that he called "semantic memory". It enables the

association between semantically related concepts to be discovered. This

provides a simple form of inference and is also used by the system to control

the parsing of English into the network.

Semantic memory was later incorporated into a system called

Teachable Language Comprehender (Quillian 1969) that translated a subset of

English into the semantic memory representation. Teachable Language

Comprehender, or TLC, regards each input sentence as a specification for

assembling the parts referred to in the sentence. These parts are called units

by Quillian and they correspond to what are called concepts in PIDGIN. TLC is

not a question-answering system; it is a mechanism for assembling new units

of semantic memory from English sentences. The simple syntax used by TLC

during its analysis is secondary to the main mechanism for assembling new

units from old. Thus the analysis is semantically rather than syntactically driven

and it makes use of extensive implicit information. TLC is historically related to

TEMPO (Thompson 1966) and SYNTHEX (Simmons 1962). It does not deal with

26

a restricted environment like Bobrow (1964), Raphael (1968) or

Winograd's (1971) system but attempts to handle general unrestricted English

sentences. In many respects TLC is similar in scope and purpose to Schank's

system (1969b).

The TLC memory consists of facts and form tests. A fact is either a unit

or a property and a form test is a syntax routine that recognises simple phrases

and specifies what action to take if found. A unit corresponds to a concept,

noun phrase or sentence and in semantic memory it consists of a superset

pointer plus zero or more delimiting properties. This idea of a concept being

defined by a suitable restriction of a superset concept is also used by PIDGIN. A

property is an attribute value pair plus zero or more refining properties. Units

can also be modified by quantifiers and defined as sets of other units. The

memory is thus one big interconnected network in which each unit is connected

to its superset unit and, via properties, to modifying units.

Because the units are interconnected it is often possible to trace a path

between two units along the superset and property pointers. Two units are

related if a path exists between them and by considering the properties along

that path they can be semantically related. So given any two units they can be

semantically related by looking for a path between them. This is done in TLC by

a breadth first or parallel search from each of the units. Each unit reached is

"tagged" and the first common (intersecting) unit found gives the shortest path

and thus the "closest" semantic link between them.

To analyse a piece of text each word in the text is associated with a list

of all of the words' meanings plus possible anaphoric ("backward") references.

A semantic link is then looked for between each of the meanings of the words

close together in the text. If a link is found and a form test succeeds then the

part of memory through which the link passes is copied as part of the new unit

27

being generated. However, if any superset pointers are involved then

the particular values are copied rather than the superset unit. This corresponds

to the way that a question and statement may be matched in PIDGIN even

though one involves concepts that are supersets of those in the other.

The form tests are introduced to check that the syntax agrees with the

semantic link found. For example, though "lawyer t s wife" and "wife's lawyer"

are both connected by the fact that a person may employ a lawyer the form

tests associated with "employ" only allow the second syntactic arrangement to

agree with such a semantic link. Each attribute and value in the system is

associated with a set of form tests which pass or fail possible semantic links by

checking the syntax (word order, inflexion, agreement and so on between the

words involved). The form tests are applied one by one until one is found that

succeeds. If a form test only fails because of intervening words it is

provisionally succeeded and if the intervening words are all later incorporated in

the analysis then the form test succeeds.

When the analysis is complete the original sentence will have been

transformed into a single unit made up of copies of parts of the memory with

new units substituted. The new unit created is linked into the complete

semantic memory and can then be used to form part of a later new unit. TLC

regards a sentence as being about the subject of the sentence. The subject

forms the basis of the new unit and determines the superset link of the whole

new unit. The subject is then modified by properties such as the verb group,

qualifying clauses, adjectives and so on. Some of these properties are further

modified, for example an adjective may be modified ("light blue") and a verb

may be modified by an adverb ("walk quickly"). In PIDGIN the subject and verb

are regarded as together forming the basis of the structure and each of these

may be further modified as well as the combination of the two being modified.

28

TLC might generate the following unit from:

A boy is walking to the park.

Whereas PIDGIN would generate the conception

A BOY TRANSFER SELF A PLACE THE PARK.

TLC regards the sentence as being about "boy", in fact as specifying a

new unit which is its old "boy" unit modified by the property of "walking", which

is further modified by "in park". PIDGIN regards the sentence as being about

"boy transferring" (explained later) and it handles the prepositional clause by

incorporating it in with the particular case system it associates with the act

TRANSFER. TLC handles the sentence in a very uniform manner. PIDGIN uses a

more complex representation based upon Schank's work and also upon the

requirements that a conception is a program statement that can be evaluated

for its effect upon the system. The advantage of the more complex

representation is mentioned by Simmons (see last section).

1.2.2 Schank's Dependency Representation

Schank developed Hay's conceptual dependency grammar into a

linguistic theory organized from a computational point of view. Linguistic

utterances are regarded as devices used by the utterer to guide the formation

of a conceptual structure in the receiver by modifying and guiding expectations.

Schank states that there exists a conceptual base into which utterances in

natural language can be mapped. He proposes a syntax and semantics for such

29

a conceptual base and describes mapping rules for generating

conceptual structures from language utterances and vice-versa. The conceptual

base is claimed to be language independent and meaning based, that is to say

any sentences, in any language, with the same meaning, can be translated into

the same conceptual structure and any two sentences with a different meaning

can be translated into different structures. Further, it is claimed that a

conceptual base containing a small, fixed number of "acts" is sufficient to allow

the meaning of all the verbs in natural language to be expressed.

Schank's system will be described starting with his idea of a concept,

how concepts may be combined and how utterances may be translated into

such structures.

a. Concepts

The basic structure in the conceptual base is called a conceptualization.

This consists of concepts and certain relations between the concepts. There are

three types of concept, a nominal, an action, and a modifier. Nominals can be

thought of by themselves without needing to relate to other concepts, i.e. a

word that is the realization of a nominal concept tends to produce a picture of

that real-world object in the hearer's mind. For this reason they are also called

PPs (Picture Producers), for example, man, book, John and London are all PPs.

An action is what a PP can be said to be doing. Schank has reduced the

actions required in the conceptual base to less than twenty. These actions are

called ACTs and the reduction and rationalization of the ACTs is one of the most

important features of Schank's system.

A modifier is a concept that makes no sense without the PP or ACT to

which it relates. It describes the PP or ACT to which it relates ~d serves to

30

specify an attribute of the nominal or action. Modifiers of nominals

are called PAs (Picture Aiders) and of actions, AAs (Action Aiders).

In computer systems based on his theory Schank suggests a number of

"files" of information that should be kept in order to produce a working system.

One of these files is called the semantic information file; this contains

information about which concepts may modify which other concepts. For

example, the concept "pebble" might be associated with the information that it

is, by definition, a physical object that is round in shape; usually smooth

textured and may be modified by the attributes of colour, size and consistency.

The semantic file is used to check concept combination during translation to

help disambiguate a sentence and during generation to restrict the

conceptualizations generated.

The concepts are language independent meaning units and to explain

the differences that exist between the meanings of words in different languages

Schank develops the ideas of under and over-naming. For example, "mare" is

the over-named variant of "female horse" and "flat rectangular surface raised

from the ground by four legs" is the under named variant of "table". He

suggests that similarity can be reduced to equality, between PPs, in so far as

two PPs refer to the same picture. For example, "mare" and "female horse" are

the same concept as both refer to the same picture. So, if there are 40 words

for different types of rice in one language and only one word in another then

the language independent conceptual base for the first would have 40 named

concepts for rice while the second would have just one. However, both systems

would implicitly contain the same range of rice types because this depends not

upon what concepts are named but on the allowed concept modifiers and the

allowed concept combinations. Thus if both systems contain the information

that rice can have texture, and possible textures are smooth, gritty, course and

31

rough, then both contain the implicit concepts "smooth rice", "gritty

rice" and so on. By including all the possible modifiers of rice possibly hundreds

of implicit rice concepts are contained in both systems. Most of these will be

unnamed, for example:

 "Very small, slightly gritty, soft, yellow rice".

Of course different particular conceptual bases differ in the range and

size of their information files but this is the essence of a conversational system,

i.e., one that learns new concepts and increases its range of conceptual

knowledge through discourse.

b. Conceptualizations

The conceptual categories (PP, ACT, PA and AA) can relate in specified

ways to each other. These relations are called dependencies and are the

conceptual analogue of the syntactic dependencies described by Hays and

others. A dependency relation between two concepts indicates that the

dependent concept predicts the governing concept. A dependent must have a

governor. The fundamental base of any conceptualization (except for certain

special cases) is what is called a two-way dependency link between the main PP

and ACT. From these two inter-dependent concepts all the other dependent

concepts of the conceptualization hang. Associated with the act will be a case

dependency which can be either objective, recipient, directive or instrumental

and will link one or more PPs to the ACT as conceptual cases. Any PP may be

modified by a PA or by the relation of containment, location, or possession to

another PP.

The conceptual act cases are the basic predictive mechanism available

to the conceptual processor, and dialogues are often partly concerned with

filling in the case slots in a conceptualization.

32

Conceptualizations can relate to other conceptualizations by

dependencies called conceptual relations. The most important of these is

causality as this is present in the conceptual structure representation of many

natural language utterances in which causality is not explicitly mentioned. For

example, verbs such as "kill", "fly", "comfort", and "prevent" in English.

Schank claims that his conceptualizations, with their small fixed

number of ACTs, are sufficient to represent adequately the information

underlying English verbs. Since there are thousands of verbs and only a few

ACTs this amounts to a tremendous saving, especially when considering the

inference rules that must be associated with each one.

c. Natural Language Analysis

The translation of natural language into conceptualizations, as

described by Schank, takes place at two levels, the conceptual and the

sentential. The conceptual level is concerned with creating syntactically well-

formed conceptualizations incorporating all the information from the utterance

and the sentential level is concerned with the particular syntax rules of the

natural language being translated. The words of the utterance are used as

indicators of the top-level structure to be searched for. The translator thus

combines a bottom-up with a top-down parser and avoids spending a great deal

of time looking for combinations of syntactic categories that do not exist and

looking to see if what is wanted at the conceptual level is present at the

sentential.

At any point in a translation the system will be working at a number of

levels of prediction:

33

i) Syntax: at the conceptual level the rules determine

what concepts are required and at the sentential level what part of

speech is allowed at any point.

ii) Context: the preceding part of the sentence and the preceding

sentences limit what is expected at any point in terms of what

particular verbs or nouns are most likely. A similar prediction can be

made at the conceptual level.

iii) Conversational: because people talk for a reason and because the

hearer is usually aware of the reason it is possible for prediction to be

made about large parts of sentences. This fact is usually taken into

account by the person speaking who will truncate an otherwise lengthy

utterance.

iv) World view: as well as information associated with a particular

conversation, each individual also has knowledge of the situation within

his entire view of the world. This includes the speaker's knowledge

about the hearer and vice-versa. This information is used by hearers in

order to predict what is likely at any point in an utterance and by

speakers to shape and control their utterance.

All this information and more should be used by a natural language

translator to help it predict and thus disambiguate an utterance and also to

enable it to fill in any information assumed and omitted by the speaker. This is

done by Schank's translator by making use of the system's memory of past

conceptualizations and rules about likely intentions and behaviour.

The translator works by using surface level heuristics to help it find the

main verb and the subject. From this a verb-ACT dictionary allows the system

34

to set up a rudimentary conceptual structure which can be used to

direct further analysis.

d. Conclusions

Schank's conceptual dependency framework provides a good base for

holding the meaning, or deep structure, of natural language utterances in a

computer conversational system. However, Schank's notation was not designed

to be interpreted and therefore suffers from some of the disadvantages claimed

by Winograd to exist with such static systems. The setting up of PIDGIN

attempts to overcome this disadvantage by defining a language plus an

interpreter so that utterances can be translated into procedures and thus take

advantage of the benefits of doing this as described by Winograd (1970).

The main advantage of Schank's scheme is the rationalization of

conceptual actions and their case dependencies. Reducing the number of

actions to below twenty allows a conversational system to be able to

incorporate all the basic actions and their associated 1nference rules in an

initial system and conversationally extend this base to include more nominal

concepts and more sentential level verbs and nouns.

Unfortunately the interpretation of Schank's structures is not well

defined and there are a number of omissions. PIDGIN attempts to rectify some

of these faults, first by defining its syntax clearly, then by defining an

interpreter and lastly by unifying and extending the possible structures. Some

of the main features of PIDGIN omitted by Schank are the clear treatment of

structures above the conceptualization (see Abelson, Section 1.2.4), a full

treatment of relations and properties, the inclusion of arithmetic expressions, a

pattern matching ability, the consistent treatment of quantifiers including scope

rules, and the deeper analysis of concepts.

35

Schank's ideas have been implemented as a system called

MARGIE (Memory, Analysis, Response Generation and Inferences on English,

Schank 1973c), which includes an ana1yser that translates English into

conceptualizations, and a generator that translates conceptualizations back into

English (Goldman, 1975).

The existence of such an implementation obviates the need for a

PIDGIN translator implementation because there is a simple syntactic

correspondence between Schank's conceptualizations and PIDGIN statements.

Of course, in order to demonstrate those features of PIDGIN not available in

Schank's system a complete translator for PIDGIN would be an extension of

Schank's translator but for a large part of the facilities it could be essentially

the same. However, because of the differences the design of a PIDGIN

translator has been described in Chapter 4.

36

1.2.3 Winograd's Procedural Deep Structure

The greatest influence in AI in the last few years has undoubtedly been

the system designed and developed by T. Winograd. He brought together many

different techniques and implemented an impressive system that could

remember information, answer questions "and obey orders concerning a

simulated "toy world" of co1oured blocks, boxes and pyramids on a table top.

Winograd's system uses a parser that is based on the ideas developed

in Halliday's systemic grammar (1970). The parser is a program in a language

called PROGRAMMER, a language developed by Winograd specifically for the

task. The parser does not work independently of the rest of the system but can

call upon any of the other parts to check what it is doing as it goes along. For

example, when each phrase is formed complex deductions can be performed to

check that the phrase is correct before continuing.

Transformational grammar deals with a context-free base grammar

over which transformation rules operate to produce the actual "surface

structure". Systemic grammar works with a context-free tree but each node of

this tree may be associated with "features". These features are, for example,

"transitive", "question", or "major" and by their use the context dependent

aspects of natural language can be handled in an economical way. Further,

there is a high degree of correlation between these features and the semantic

interpretation of the constituents that exhibit them. The parser extracts the

features by the use of special routines that check agreement, word endings,

word order and so on. Context sensitive aspects are handled by special checks,

for example, the verb phrase routine might climb back along the parsing tree to

find the main subject in order to check that the subject and verb endings are

either both singular or both plural.

37

As the parse tree is built up semantic routines are called to

generate the PLANNER program that is equivalent to the parse tree produced.

PLANNER is a programming language developed by C. Hewitt (1971, 1972) to

enable goal-directed theorem-proving programs to be simply written. For

example, if the noun group "a red cube" has been parsed the tree formed is

passed to the noun group semantic routine to produce the corresponding Micro-

Planner (the implementation of PLANNER used by Winograd, see G.J. Sussman

1970) statements:

(THGOAL (#IS $?Xl #BLOCK))

(#EQDIM $?Xl)

(THGOAL (#COLOR $?Xl #RED))

The above program would fail of there were no blocks of equal

dimensions and coloured red, otherwise it would succeed with the variable Xl

bound to the first red cube found in the data-base. The above piece of program

would form part of the complete procedure generated for a sentence. For

example, the question "How many red cubes are there" could use the above

program repeatedly to find every red cube and at the same time keep a count

of the number found. The imperative "Put a red cube in the box" could use the

same program to find a red cube and then it could be moved into the box by a

further piece of PLANNER program. The assertion "I like red cubes" could

generate the theorem

(#LlKE $?X)

with a body which is the same as the above program. This would fail if

the object given to the theorem were not a red cube (e.g. (#LlKE :PYRAMID)),

otherwise it would succeed.

Winograd has taken the sophisticated data-base theorem-proving

programming language PLANNER as the structure in which the meaning of a

sentence is represented. This structure is not a static tree structure but an

38

actual PLANNER program. By representing meanings as procedures

Winograd argues that greater power and flexibility is obtained than with any

static representation such as that of Schank. However, the advantage of

Schank's representation is that it was designed around the conceptual base of

natural language whereas PLANNER was designed as a theorem-proving

language. It was to try to combine the advantages of both these systems that

PIDGIN was developed.

Winograd developed the powerful parsing language, PROGRAMMAR,

based on systemic grammar theory, in order to write a parser that could

produce a parse tree for any meaningful English sentence in the vocabulary

used. This parse tree then had to be translated into a PLANNER procedure. By

designing the meaning structure to incorporate the underlying rules of natural

language the parser can be driven by the syntax of the meaning structure and,

further, this meaning structure can be built up as the parsing proceeds, word

by word.

Most question-answering systems, including Winograd's, generate

output by a form of "slot-and-fi11er" technique. The system contains various

skeleton sentences into which the answer or query is put. Winograd's system

uses a number of special rules to improve the form of the output by the use of

pronouns and word endings. Each type of question has a model output

statement into which the answer is put. There are also a number of built-in

error messages to reject questions that cannot be answered, and ambiguous

and other ill-formed sentences. The advantage of Schank's scheme is that

every possible legal conceptualization can be mapped into an English sentence,

whereas in Winograd's system there is no attempt to map PLANNER back into

English. Schank discusses how random sentences may be generated within his

system and he goes on to say that to generate conversation it is necessary to

39

introduce motivation into the choices made. However, he does not

describe how this might be done.

PIDGIN generates a conception as an answer to a question, and this

conception is then mapped back into English. Consider an example to compare

Winograd's use of PLANNER with PIDGIN. The question:-

What is in the box?

will be parsed by Winograd's system to form a parse tree which will

then be translated into a PLANNER procedure that will contain a statement of

the form:

(THGOAL (#IN :BOX $?Xl))

The object found will then be slotted into a standard reply suitably

modified to distinguish it from all the other objects. If no object was found then

a suitable "error" message would be output.

PIDGIN would analyse the question into:

AN OBJECT <IN BOX> ?

and this question would then be evaluated to return say:

PYRAMID <IN BOX>

This then forms the basis of the reply.

PIDGIN can be described by analogy with certain features of PLANNER.

In PLANNER there are a large number of primitives that manipulate arbitrary

patterns stored in a data-base. One of these primitives is "GOAL" (or "THGOAL"

in Micro-Planner). This primitive will succeed if the pattern which is its

argument matches a pattern in the data-base or if the pattern matches a

consequent theorem and then that theorem succeeds. This is the essence of the

evaluation of PIDGIN. Every PIDGIN statement either succeeds or fails when it

40

is evaluated. If it matches a statement directly or if it matches an IF-

rule that succeeds then it succeeds; otherwise it fails. PIDGIN statements can

be conjoined or disjoined with other statements to form programs in which the

flow of control is determined by the success or failure of its individual

statements. A complete description of the evaluation of a PIDGIN statement is

given later but the above summary serves as a useful guide to the overall flow

of control.

In conclusion, Winograd's system is a PROGRAMMAR program that

translates English sentences into PLANNER procedures that manipulate a data-

base which is a description of the simulated toy-world. A PIDGIN conversational

system is a PIDGIN program that translates English sentences into PIDGIN

statements that manipulate other PIDGIN statements that together form a

description of the world.

1.2.4 Abelson's Belief Structures

Whereas Schank describes the details of the structure of conceptual

dependencies, Abelson considers the relationships between them. Abelson is

interested in how conceptualizations can be put together to form larger

coherent systems. Schemes such as Schank's and Winograd's are sometimes

called "knowledge systems" because there can be little argument over the truth

or falsity of the facts stored within the system. However, when relationships

between conceptualizations, such as purpose and cause, are considered,

disagreement may arise. Such systems are therefore called "belief systems".

Abelson distinguishes between three types of conceptualization, which

he calls "atoms", i.e. action atoms, state atoms, and purpose atoms. He

describes how these may be put together to form "molecules" and how these

41

can be assembled into "plans". Plans of two individuals can be

related as "themes" and these can be built up into complete ideologies or

"scripts".

For the purpose of building a problem-solving system the complete

range of Abelson's work is not required. However, his technique for assembling

atoms into plans is directly applicable to building a chess playing program and

his higher level techniques for building themes and scripts could be applied to

constructing a chess program that played with purpose to achieve certain states

by particular actions and which could play with say aggression or care (themes)

or possibly in a way that was related to the opponent's style. It must be

remembered that although the chess problem was mentioned above and this

particular problem is considered in more detail later it is not being studied as m

end in itself but only in so far as it is a well defined problem that is difficult to

solve. This means that although the ideas presented below are later applied to

a particular chess endgame problem they were added to PIDGIN with more

general aims in view.

A brief summary of Abelson's terms and techniques will be given and

then related to the specific requirements of a PDIGIN chess system in order to

show how they may be used in a practical system. Abelson bases his work on

Schank's Conceptual Dependency Analysis with minor changes to the notation

for the sake of convenience within Abelson's overall system. Abelson calls

conceptualizations, "atoms" and distinguishes three types, A (action) atoms,

which are Schank's PP-ACT conceptualizations, S (state) atoms which are

Schank's attributive PP-PP or PP-PA conceptualizations and P (purpose) atoms

which have the Schank representation:

42

Actor <=> want

 Actor <=> Poss (X)

These atoms can be assembled into plans. The simplest type of 'plan is

called a molecule and it has the form:

P - A - S

where the S-atom is the state connected to the "want" of the P-atom,

the A-atom is causally connected to the S-atom and the actor in the A-atom is

an agent of the actor in the P-atom. A molecule captures the idea of an action

undertaken in order to attain a goal desired by the sponsor of the action.

With each type of actor-action conceptualization of the "TRANS" class

(as described by Schank, 1973b) Abelson lists those states that must hold

before or while the action is performed. For example, before A can take X from

B using Y three states must hold, B must possess X, A must have access to Y,

and A, X and Y must be in close proximity. These conditions can be simplified,

for example, if the instrument Y is A's hand and the object X is taken from a

place rather than a person then the only condition is that A and X are in close

proximity.

The simple P-A-S molecule can be extended to form a "serial plan" (or

"chain") by interposing alternating A and S atoms following the initial P-atom.

Then the final S-atom must be the "want" state of the P-atom, each A-atom

must be causally bonded to the following S-atom, the actor in each A-atom

must be either the actor in the initial P-atom or the agent of the actor in the

preceding A-atom, and each S-atom must "enable" the following A-atom.

Networks may be built up to form complex plans because an action may require

a number of states before it is enabled and one state may enable a number of

43

actions. Abelson distinguishes fourteen types of linkage between

atoms in a network:

i) P --- A Purposive action The action A serves the
purpose P.

ii) A --- S Casual linkage Action A causes the outcome

S intended by the actor.
iii) S --- A Enablement The state S enables action A.
iv)

Multiple enablers All of states S1...Sn are

required to enable action A.

v)

Multiple enablement State S enables all of the
act1ons A1...An.

vi)

Concurrent action Actor with purpose P
concurrently undertakes
actions A1...An.

vii)

Multiple
consequences

Action A causes each of the
intended consequences

S1...Sn

viii)

Alternative causation S is caused by either A1 or

A2...A

ix) A -x- S Casual blockage Action A prevents state S
x) S -x- A Vitiation State S inhibits performance

of A

xi) A --- S Unavoidable
consequence

Action A causes state S, not
intended by the actor

xii) A -x- S Unavoidable blockage Action A unwittingly prevents

outcome S
xiii) A --- S1
 S2

Positive gating State S2 enables action A to
lead to state S1

xiv) A -x- S1
 S2

Negative gating State S2 prevents A from
leading to state S1

All of the linkages can be combined to form a network, with the

additional restriction that all networks must begin with a single leftmost P-atom

and end with one or more rightmost S-atoms.

If the atoms correspond to statements in a normal programming

language then the above linkages correspond to the control structure. It is

44

interesting to compare a network with a PLANNER program to

contrast the two ways in which plans are constructed. A comparison highlights

the view expressed in this thesis that the program structure of a conversational

system should reflect the structure found in natural language rather than that

taken from programming languages. For this reason the control structure of

PIDGIN is based on a scheme similar to the above description.

In PIDGIN a state can be specified as desired and if it is connected by

enabled actions to the current situation then a plan can be constructed that

consists of those actions. Every action is associated with a set of enabling

states and if all these hold then when the action is performed a new set of

states will arise which will enable further actions to be performed until the

desired state holds.

Abelson goes on to consider how two plans can be combined into a

theme. A theme is a relationship between the plans of two actors. One actor is

either the agent, goal object or interested party of the other actor's plan. Each

actor has an "attitude" (positive of negative) towards the other and each is able

to interfere with the other's plan in a set number of ways. Depending on

whether the actor's relationship: is positive or negative a theme will be one of

admiration, devotion, cooperation, alienation, betrayal, rebellion, antagonism,

oppression or conflict, plus a number of other related themes.

Themes can be combined to form theme sequences or scripts. A script

is a network of themes with linkages analogous to those between atoms in a

plan. For example, the "romantic triangle" script runs:

45

And the rescue script might run:

Abelson gives the script of the current Cold War (detente disregarded)

based on a hypothesised belief system or ideology of what he calls a Cold

Warrior.

PIDGIN has not been extended to contain primitives that correspond to

themes and scripts as from the point of view of the chess problem these are

simple and fixed. In chess the theme is conflict leading eventually to

oppression. The script is simple; for player A it would be:

Schess Conflict (A, B) Oppression (A, B)

The chess ideology is simple and brutal. However, it might be

interesting to postulate an ideology for say, the white king, involving themes

corresponding to the interplay of all the pieces. What is interesting about chess

is the nature of the theme of Conflict. Abelson diagrams this as:

46

It might be worth while to consider the chess problem from

this point of view. Each side can carry out actions that either damage the

position of the other side or prevent the other side from doing damage, both

from the point of view of the desired end state. Such a computer program

would need to consider its own plans, to hypothesise about its opponent's plans

and to consider how they interact.

47

48

CHAPTER 2 PIDGIN - A REALISATION LANGUAGE

2.1 The PIDGIN Language

PIDGIN is a programming language into which natural languages, such

as English, may be easily translated. Thus corresponding to every PIDGIN

program there is some sequence of English sentences. The unit of a PIDGIN

program is called a conception and this corresponds approximately to 'a simple

English sentence. Conceptions can be combined to form what are called

thoughts, as sentences can be combined in English to form complex sentences,

rules, suggestions and so on. There are eight types of thought in PIDGIN, each

associated with a different conception connector. For example, the following

PIDGIN thought uses the IF connector to join a single conception to a rule

consisting of two conceptions joined by conjunction:

A WOMAN <AUNT A PERSON1> IF

 THE WOMAN <SISTER A PERSON2> AND

 THE PERSON2 <PARENT THE PERSON1>.

This corresponds to the English definition:

A woman is the aunt of somebody if she is the sister of another

person who is the parent of the first person.

The above PIDGIN thought is given in a language called Input PIDGIN.

This is assembled by a program called the PIDGIN assembler into the Strict

PIDGIN language. Input PIDGIN is suitable for human consumption and Strict

PIDGIN for machine interpretation, for example, the above thought would be

assembled into the Strict PIDGIN thought:

<IF [1 LTS 50 TRUE <EQUAL 123> MANNER PERIOD MOD]

 <BE <WOMAN <EQUAL 1> SUBJA <AUNT <PERSON1

<EQUAL 1> ATTR SPEC>>>

 [2 LTS 50 TRUE <EQUAL 123> MANNER PERIOD MOD]>

 <BE <WOMAN <EQUAL 1> SUBJA <SISTER <PERSON2

<EQUAL 1> ATTR SPEC>>>

 [3 LTS 50 TRUE <EQUAL 123> MANNER PERIOD MOD] >

 <BE <PERSON2 <EQUAL 1> SUBJA <PARENT PERSON1

<EQUAL 1> ATTR SPEC>>>

49

 [4 LTS 50 TRUE <EQUAL 123> MANNER

PERIOD MOD] >

>

If the interpretation rules given later are referred to it can be seen that

this PIDGIN thought will result in the function IF being applied to its three

arguments. The IF function will store the rule in memory so that it can be used

later to make inferences. For example, consider the three Input PIDGIN

conceptions:

MARY <SISTER JOHN>. JOHN <PARENT BILL>.

MARY <AUNT BILL>?

The first two assertions would be stored in the memory in their

expanded Strict PIDGIN form. The question, however, must extract information

from the memory. This is done by matching the question with all the

conceptions stored in memory. If one matches then that is the answer, but if

none match then the system will try all matching IF thoughts in order to try to

answer the question using deduction. If the first conception of some IF thought

matches, as it does in this case, then the other conceptions making up the IF

thought are treated as questions. If these can be matched (possibly involving

further IF thoughts) then the original question succeeds and is answered,

otherwise the answer cannot be inferred from the memory.

It can be seen from this example that there are two ways the PIDGIN

system treats conceptions and thoughts as they are input. If it is an assertion

then it is added to the memory and if it is a question then it is matched against

the memory to retrieve information from it. Together with commands (which

are like assertions but may add more than one conception to the memory

according to matching ENABLE and PRODUCE thoughts) these form the basis of

all PIDGIN. It remains necessary to describe the exact syntax of both Input and

50

Strict PIDGIN, the matching algorithm, the general structure of the

system, and implementation questions such as the structure of memory.

2.1.1 The Strict PIDGIN Language

A description of the syntax of Strict PIDGIN will be given next, and it is

convenient to describe first the foundation of the complete PIDGIN system - the

interpreter. The basic interpreter is called ABC (Associative Backtrack

Computer) and the language over which ABC is defined is called ABL

(Associative Backtrack Language). Each Strict PIDGIN thought is a legal ABL

expression, so each Strict PIDGIN thought can be interpreted according to the

rules of ABC. The complete PIDGIN interpreter is ABC plus a number of ABL

expressions to be described later. The syntax in this section is a type of

Backus-Naur notation with the following features:

i) The string "::=" can be read as "is defined as".

ii) The vertical bar can be read as "or".

iii) Lower case letters and the hyphen are used to name syntax

categories. Each category is defined once by placing it on the left-hand

side of the "::=" string with its legal replacements on the right-hand

side.

iv) Upper case letters, digits and punctuation characters are terminal

symbols.

v) If a defined syntax category (say, X) is used terminated by the

letter "s" then this means that is may occur one or more times (i.e. Xs

::= X X Xs).

51

vi) If a defined syntax category (say, X) is used terminated

by the string "-choice" then this means that it may occur between band

or class brackets (see syntax). That is:

X-choice ::= X (X-choices) X-choices [X-choices] X-choices

vii) A string in quotes is used to describe the category in English.

First the ABC language ABL is defined and the interpretation rules

given. This is followed by the syntax of Strict PIDGIN together with some notes

justifying the structures described by the syntax by reference to the way the

system is used. It should be noted that the set of strings defined by the PIDGIN

syntax rules are a strict subset of the set of strings defined by the ABL syntax

rules. Thus the interpretation rules given for ABL also apply to each legal

PIDGIN string.

2.1.1A Associative Backtrack Computer

The following sixteen syntax categories define a language called ABL

(Associative Backtrack Language). After this the evaluation of each legal ABL

string is given.

expression ::= application band class concept number

application ::= <expressions>

band ::= ordered-band unordered-band

class ::= ordered-class unordered-class

concept : : = name name subscript

number ::= integer real negator number

ordered-band ::= [expressions]

unordered-band ::= expressions

ordered-class ::= (expressions)

unordered-class::= expressions

name ::= "one or more letters"

subscript ::= integer

integer ::= "one or more digits"

real ::= integer point integer

point ::= "a full stop"

negator : : = "a hyphen"

52

To define the evaluation of an ABL expression the evaluation

of each of the five types of expression is described separately. In general when

an expression is evaluated it either returns a value, and is said to succeed, or

else it fails.

i) Concept. In order to describe how a concept is evaluated it is

necessary to describe some other features of ABC first. Every pair of

concepts is associated with an expression, which is initially taken to be

the first concept of the pair. The pair is ordered, that is, the pair A/B

need not be associated with the same expression as the pair B/A. The

second concept of the pair is called the "aspect" and the expression is

called that aspect of the first concept. For example, if the pair

PERSON/SUB is associated with MALE then MALE is called the SUB

aspect of PERSON. The REF aspect of a concept is also called the

reference of that concept. The aspect of a subscripted concept is always

equal to the same aspect of the unsubscripted concept except in the

case of the REF aspect. That is, the X aspect of A equals the X aspect of

A1, A2, A3 and so on, but the REF aspect of A may be different from

that of A1, which may differ from that of A2 and so on. For example,

the SUB aspect of PERSON3 is the same as the SUB aspect of PERSON

but their references may be different.

 A concept is evaluated by evaluating its reference, if this is equal

to the concept itself then evaluation fails.

 The association of an expression with a concept pair may be

"frozen" so that it can no longer be altered by the PIDGIN processes of

matching and binding described later. In PIDGIN the only association

that is frozen is that with the concept ENTITY, if this is frozen as the

53

reference of a concept then that concept is called an entity

concept. Any other concept is called a group concept.

 During the evaluation of ABC if the association of an expression

with a concept pair is altered then the previous association is

remembered until the expression currently being evaluated either

succeeds or fails. If it fails then the previous association is reinstated,

this is called automatically undoing a side-effect after failure.

 The set of all the associations of expressions with concept pairs is

called the data-base. During evaluation the data-base is continually

changing and it forms a context for resolving ambiguities and anaphoric

references during natural language translation, as well as a guide to

control memory searching and a "local variable" mechanism when

making deductions. The memory of PIDGIN is a subset of the data-base

consisting of those statements stored by the running system. The ABL

programs making up the PIDGIN system determine the particular way

the memory is "partitioned" into the data-base and this is described in

more detail later.

ii) Application. An application is an ordered sequence of one or more

expressions, the first of which is called the function and the others of

which are called the arguments. To evaluate an application (i.e. apply a

function to its arguments) all the arguments are formed into an ordered

band (any argument that is itself an application being evaluated first).

 This ordered band is then made the reference of the concept

ARGS. The function is then examined; if it is one of the 42 ABL

primitives listed in Appendix 1 then the action taken is as described in

Appendix 1 (note that if its ARCS aspect is QUOTE then the arguments

54

are not evaluated first as described above). If it is not a

primitive then it is evaluated according to the rules given in these five

pieces. In particular if the function is a concept then its reference is

evaluated. The value of the application is the value obtained by

applying the function to its arguments.

iii) Band. A band is either an ordered or an unordered conjunction of

all the expressions it contains. It is evaluated by evaluating each

expression until all succeed or until one fails. If an expression fails then

the evaluation of the band terminates immediately and any side-effects

are automatically undone and the complete band fails, otherwise the

band succeeds and the value returned is the value of the last

expression evaluated. If the band is unordered then the order of

evaluation of its expressions is not defined.

iv) Class. A class is either an ordered or an unordered disjunction of

all the expressions it contains. It is evaluated by evaluating each

expression until one succeeds or all fail. If an expression fails then any

side-effects are automatically undone. If all the expressions fail then

the complete class fails. If an expression succeeds then the evaluation

terminates immediately, the side-effects of any other expression in the

class being evaluated are undone and the class succeeds, returning the

value of the successful expression. If the class is unordered then the

order of evaluation of its expressions is not defined.

v) Number. The evaluation of a number always fails.

55

2.1.1B Strict PIDGIN Syntax

A Strict PIDGIN program is a sequence of statements the syntax of

which is a particular restriction of the more general syntax of ABL. The syntax

of ABL allows any number of bracketed expressions or concepts or numbers to

be enclosed in anyone of five types of bracket. The syntax of PIDGIN allows

only specific numbers and types of concept and bracketing to make up a

program. As the ABC interpreter is defined over all ABL expressions it follows

from the above that it is defined over any PIDGIN program.

A PIDGIN thought is a conception connected to a choice of conceptions

by one of the eight connectors. A conception consists of one of the ten acts plus

one to four actors plus a modifier. Before giving the syntax of thoughts and

conceptions the following diagram of a simplified version of the syntax may

make their structure clearer:

program ::= statements

statement ::= thought conception

thought ::= <SUGGEST modifier state-choice state>

 <ENABLE modifier state-choice action>

 <PRODUCE modifier action state-choice>

 <CAUSE modifier action actions>

 <THEREFORE modifier

56

 <CAUSE modifier action actions> action>

 <THROUGH modifier action action-choice>

 <WHILE action-choice action-choice>

 <IF modifier conception rule>

rule ::= conception-choice

The following two categories do not form part of the syntax but are

given here because they are referred to later:

plan ::- action-choice

scheme ::= state-choice

The above syntax defines the connections allowed between the

conceptions whose syntax is described next. Conceptions correspond

approximately to simple English sentences and the above syntax defines all the

ways that these may be put together in PIDGIN. The function part of a thought

application is called a connector (see Division 2.3A).

conception ::= state action

state ::= <state-act actor modifier>

action ::= <action-act kernel modifier>

kernel ::= subject object

 subject object source destination

subject ::= actor-choice

object ::= actor-choice thought pattern

source ::= actor

destination ::= actor

actor ::= <nominal quantifier [attributes]

 [specifiers] >

nominal ::= entity-concept group-concept

entity-concept ::= SELF

group-concept ::= THING

state-act ::= BE

action-act ::= BECOME COGITATE DO IDENTIFY MOVE PASS

 PERCEIVE TRANSFER TRANSMIT

 TRANS TROW

quantifier ::= <comparator quantity> ALL

comparator ::= EQUAL ABOUT MORE LESS

quantity ::= <operator quantity quantity> number

 variable actor ALL

operator ::= ADD SUB MULT DIV

variable ::= NUMBER

attribute ::= ATTRIBUTE

specifier ::= <relation actors> <<relation relmod> actors>

relation ::= SUB EQUIV INVERSE OPPOSITE POSS HAS

 FEEL VALUE PRIORITY CLASS space-relation

space-relation ::= LOC NEAR ABOVE BELOW BACK

 FRONT LEFT RIGHT BETWEEN DIST

57

relmod :: = MAX MIN MEAN

modifier ::= [index author priority truth time manner

 period [mods]]

index ::= integer

author ::= entity-concept

priority ::= integer

truth ::= NOT TRUE POSSIBLE DEFN

time ::= quantifier

manner ::= CAN INTEND ACCIDENT DISPOSED

period ::= START WAX CONTINUING WANE STOP EVENT

 REPEAT

mod ::= <DEGREE actor> <LOC actor>

 <INTERVAL actor>

This completes the syntax of Strict PIDGIN except for the description of

the category "pattern". It can be seen that a number of features of PIDGIN are

taken from Schank's notation for conceptual deep structures. For example,

consider:

Schank modifier

 subject <=> act object

 subjmod objmod

PIDGIN <ACT <SUBJECT SUBMOD>

 <OBJECT OBJMOD> MODIFIER>

The equivalence is only approximate because PIDGIN contains features

not present in Schank's system. The differences between the systems arise

from the fact that Schank's notation is a static picture of the deep structure

whereas PIDGIN is a programming language. Thus the justification for Schank's

pictures lies with the reader because a precise interpretation is never given.

The final part of the syntax describes a structure that enables general pattern

matching problems to be handled in PIDGIN (see IDENTIFY, Part 2.3B5).

pattern ::= lattice grid line actor

lattice ::= <grids>

grid ::= <lines>

line ::= <actors>

match-degree ::= MATCH SIMILAR MIRROR

match-type ::= SAME RSUB VAGUE TYPE LIKE

58

The ability to set up and compare patterns of actors is very

useful for many problems, for example, the chess endgame problem considered

later. The complete syntax of Strict PIDGIN has now been described.

2.1.2 The Input PIDGIN Language

The syntax described in the last section would be tedious to use as an

input language because of the bracketing, the large number of modifiers

required, the dissimilarity with English and the occasional necessity to repeat

conceptions. For these reasons an input language is defined below to reduce

these problems yet maintain a clear correspondence with the Strict language.

If the Strict language is imagined as the machine-code of a PIDGIN

machine then the input language is like an assembler language. It is in one-to-

one correspondence to Strict PIDGIN, is simple to translate and is user

oriented.

The syntax below modifies the syntax of Strict PIDGIN. If a category is

not redefined it retains the definition given in the last section. Curly brackets

are used to enclose optional items.

 i) Comments. These are expressly forbidden. Any information that

would go in a comment should be given to the PIDGIN system. In some

ways statements in PIDGIN are like comments in most programming

languages.

ii) Labels. Any conception or thought can be labelled by following it

with a colon and the label name. The conception or thought is made the

reference of the label and if the label is used later it will be replaced by

its reference.

iii) Program.

59

statement ::= thought terminator conception terminator

thought ::= rule {modifier} connector thought rule

connector ::= SUGGEST ENABLE PRODUCE CAUSE

 THEREFORE THROUGH WHILE IF

rule ::= conception conception choices

choice: : = AND conception {,} OR conception {,}

terminator ::= . ? !

If a comma is used all the conceptions to the left of the comma are

bracketed together, otherwise bracketing is from the right, e.g. :

A AND B OR C AND D. gives [A (B [C D])]

A AND B, OR C AND D. gives([A B] [C D])

A AND B, OR C, AND D. gives[([A D] C) D]

iv) Conception.

conception ::= subject {modifier}{act {object

 {source destination}}}

object ::= actor-choice <thought> *pattern

act ::= state-act I action-act

If the act is omitted then the state-act (BE) is assumed.

v) Actor.

actor ::= {quantifier}{[attributes]} concept

 {specifiers}

quantifier ::= number A AN THE NO SOME MOST ALL

 EVERY ANY <comparator quantity>

 = variable

where:

NO is translated as <EQUAL 0>

THE, A, AN is translated as <EQUAL 1>

SOME is translated as <MORE 0>

MOST is translated as <MORE <DIV ALL 2>

EVERY, ANY is translated as ALL

If the actor starts with a quantifier it is assumed to be a group concept,

otherwise it is assumed to be an entity concept.

The entity concept SELF has a special meaning. If it is in the subject

position then it is taken as referring to the PIDGIN system and the conception

is treated as a command; otherwise it refers to the complete subject of that

60

conception. It must always be used where it can be used. Its use is

explained in Section 2.4.1.

vi) Modifier

modifier ::= [mods]

mod ::= POSSIBLE DEFN NOT CAN INTEND

 ACCIDENT DISPOSED START WAX

 CONTINUING WANE STOP REPEAT EVENT

 <DEGREE actor> <LOC actor>

 <TIME actor> <INTERVAL actor>

The index, author and priority cannot be specified and are added

automatically by the input assembler. If the mod POSSIBLE is used the priority

is set to 20; if DEFN is used it is set to 10 greater than the user's current

priority; otherwise the user's priority ~s used. The author is made the current

user, and the index is incremented by one for every new conception read. If the

conception is terminated by"?" then the assembler sets up the modifier:

[index author priority TRUTH TIME MANNER PERIOD MOD]

where TRUTH matches any truth, TIME any time and so on. However, if

any modifier is stated explicitly it replaces the default value. It will be seen

later (Division 2.4.2C) that the index, author and priority are ignored when

matching.

If the conception is terminated by"." then the default value . for truth is

TRUE and for time is NOW. The following abbreviations are accepted in the

modifier:

PAST is translated as <LESS t>

FUTURE is translated as <MORE t>

NOW is translated as <EQUAL t>

where "t" is the current time as maintained by the PIDGIN system.

61

vii) Patterns. A pattern may not contain more than one

occurrence of any entity concept. On input they must be preceded by

the character "*".

viii) ABL. To input a structure not complying with the syntax of Input

PIDGIN it should be preceded by the character "$". The structure

following the "$" must conform to the syntax of ABL and it will be taken

as satisfying the PIDGIN structure currently being searched for, either a

thought or an actor. From the above descriptions of Input and Strict

PIDGIN it should be clear how one is translated into the other. An

example is given at the start of this chapter.

All the syntax of both Strict and Input PIDGIN has now been covered. It

is next necessary to consider how PIDGIN statements may be used to represent

conceptual knowledge and thus enable assertions and rules to be stored from

which questions can be answered. This will be done by first considering the

overall structure of the working system. But first a few examples are given to

suggest how the PIDGIN statement corresponds to the English sentence.

2.1.3 Examples of PIDGIN

The following examples give an English sentence with the

corresponding Input PIDGIN deep structure plus a possible English paraphrase

of the deep structure. The way in which the translation is performed is

described in Chapter 4.

i) John walked to the park.

 JOHN [PAST] TRANSFER SELF A PLACE THE PARK

 THROUGH JOHN [PAST REPEAT] MOVE 2 LEG

 A PLACE1 A PLACE2 .

John transferred himself from some place to the park by moving his

two legs from one place to another.

62

ii) Bill hit John.

BILL TRANSFER AN OBJECT A PLACE JOHN.

Bill transferred an object from somewhere to John.

iii) Will John give his wife an expensive present on her birthday?

JOHN [<TIME A BIRTHDAY <BELONG A PERSON <WIFE JOHN>>>]

 PASS AN [EXPENSIVE] PRESENT SELF A PERSON

 <WIFE JOHN>?

Will John pass possession of an expensive present from himself to

a person who is his wife at the time equal to a moment which is the

birthday of the person who is the wife of John?

iv) Since smoking can kill, I stopped.

A PERSON TRANSFER SOME SMOKE A SMOKEABLE LUNG

[CAN] CAUSE THE PERSON BECOME [DEAD] SELF,

 THEREFORE SELF [STOP PAST] TRANSFER

 SOME SMOKE A SMOKEABLE LUNG.

A person who transfers some smoke from a smokeable object to

their lung can cause that person to become dead, therefore I

stopped transferring smoke from smokeable objects to my lungs.

v) John grows roses.

JOHN [DISPOSED] DO AN ACTION

 [INTEND] CAUSE SOME ROSE <HEIGHT =N INCH> BECOME

 SELF <HEIGHT <MORE N> INCH>.

John is disposed to carry out an action that intentionally causes at

least one rose of height n inches to become more than n inches tall.

iv) Yesterday, the boy in that chair stopped the girl by the window

going to the park with the dangerous swings with John.

BOY <LOC CHAIR> [PAST] DO AN ACTION

 [INTEND <TIME YESTERDAY>] CAUSE

 (JOHN GIRL <LOC WINDOW>] [STOP] TRANSFER

 SELF A PLACE PARK <CONT SOME

 [DANGEROUS] SWING>.

The boy located at the chair did an action in the past that yesterday

intentionally caused the girl located at the window and John to

stop the event of transferring themselves from somewhere to the

location of a park containing at least one dangerous swing.

The above translations are at best very approximate because the

translation actually performed by the PIDGIN system depends on the

vocabulary of concepts and the entries in the translator's dictionary, and these

63

change as the system is used. For example, in case (i) "walk" could

have been translated simply as the first conception (in which case the

information that the method of transfer involved feet would have been lost). In

the second example the tense of the verb is ignored, as it might be in "a simple

PIDGIN system. In the fifth example the actions involved in growing roses are

not specified and the intended result is simplified to merely increasing their

height. All of these limitations in the translation can be improved by giving the

system more information about the meaning of the English words.

64

2.2 The PIDGIN System

2.2.1 The Components of the System

The best way to describe the complete system is to first distinguish

between its major components, then to consider each component in detail and

finally to show how they work together to

 produce a conversational problem-solving system.

The following components may be distinguished:

A. Associative Backtrack Computer

 (i) Interpreter (42 primitives)

 (ii) Assembler (Meta-ABL to Strict-ABL translator)

B. PIDGIN

 (i) Interpreter (10 acts and 8 connectors)

 (ii) Assembler (Input to Strict PIDGIN translator)

 (iii) Disassembler (Strict to Input PIDGIN translator)

 (iv) Resolver (matcher, binder and deduction mechanism)

C. Translator

 (i) Analyser (English to PIDGIN)

 (ii) Synthesiser (PIDGIN to English)

D. Knowledge Base

 (i) Primary knowledge

 (ii) General knowledge

 (iii) Specialist knowledge

65

2.2.1A Associative Backtrack Computer

This is the heart of the entire PIDGIN system. All of the basic PIDGIN

features are written in ABL, the language of ABC. The syntax of ABL has

already been described in order to introduce PIDGIN but the description of the

primitives of ABC is relegated to Appendix I as they are more concerned with

the implementation of PIDGIN than its structure and interpretation.

ABL has been fully implemented using the programming language POP-

2 and it has been used to implement the basic features of PIDGIN. In order to

simplify programming in ABL a language called Meta-ABL or MABL was

developed, and all the examples given in ABL are written in MABL. MABL allows

much of the nested bracketing of Strict-ABL to be omitted. All the modules

described later are implemented either using MABL or using PIDGIN itself.

ABL can be regarded as the "micro-code" of the PIDGIN machine in the

sense that it was used to write expressions to implement the basic PIDGIN

features and once the design of PIDGIN was fina1ised these expressions were

never changed. That is, all further extensions to the system in terms of adding

to its knowledge, both of facts and rules, can be done in PIDGIN and

eventually, once the translator has been extended, in English.

It should be remembered that ABL is not the deep structure of, natural

language. It is at a level which is below the lowest level that can be altered by

the natural language level. No natural language input is translated into ABL

expressions and no ABL expression can be translated into natural language

unless the expression is a valid PIDGIN statement. Very crudely, the part of the

system written in ABL can be thought of as the hardware or the

neurophysiology of the complete PIDGIN system. For example, one important

capability possessed by PIDGIN is the ability to answer questions concerned

66

with its own workings. Such questions however can only be

answered to the level of the PIDGIN programs that make up the system. For

the system to produce more detailed answers it would be necessary to

construct a "model" of the ABL programs in PIDGIN. Such a model would be a

collection of PIDGIN facts and rules whose interpretation reflected the inner

workings of the system, rather than a direct analysis of the system itself.

2.2.1B PIDGIN

As every PIDGIN statement is a member of the set of ABL expressions

the ABC interpreter will interpret any PIDGIN statement. If the syntax of a

PIDGIN statement is examined it will be seen that both a thought and a

conception are applications whose first member is a concept (a connector or an

act). When evaluated this will result in the reference of that concept being

evaluated. Thus the reference of each of the eight connectors and ten acts

should be an ABL expression whose evaluation results in the changes to the

system associated with that act or connector. For example, if a PIDGIN

conception is input as a statement then it should be added to the memory, and

if a PIDGIN conception is input as a question then a matching conception

should be retrieved from memory as the answer, and if a command then the

appropriate action should be taken. The details of the actions performed by

these expressions are described later in Section 2.3.

The user who interacts with the system may do so at a number of

levels:

(i) Operating system command level

(ii) Implementation language (POP-2)

(iii) Associative Backtrack Language

67

(iv) PIDGIN language

(v) English

Commands are available at each level to allow the user to ascend or

descend one or more levels, but the exact form of these implementation details

will not be discussed here.

At each level the syntax of the output from the system reflects the

syntax of the legal input. This feature of the system becomes more marked at

the higher levels. At the PIDGIN level the output from the system has the same

syntax as the legal input to the system. However, certain errors at the PIDGIN

level can result in a return to the ABL level together with an ABL error

message. At the English level all errors are trapped and all output has a syntax

related to the input syntax that can be translated by the system into PIDGIN.

This is because both the English-to-PIDGIN Analyser and the PIDGIN to-English

Synthesiser use the same dictionary. By observing the system's output the

human user can learn what input the system will be able to translate.

The program that reads, translates and evaluates PIDGIN is called the

driver and this program is written in ABL. The simplest form the driver could

take would be to read repeatedly a single PIDGIN statement in the syntax of

the Input language, translate this into the Strict language and then evaluate it.

The driver in this case thus repeatedly calls the assembler followed by the

evaluator. The more complex driver actually used carries out tests and traps

errors to provide a better interface to the PIDGIN user. If the system were used

entirely at the English level then a PIDGIN driver and assembler would not be

required. They are necessary in order to carry out the initial "bootstrap" to the

English level and to provide a primitive level of control and adjustment to the

working English level sys tem.

68

At the PIDGIN level it is also necessary to provide a

disassembler for translating the Strict PIDGIN back into Input PIDGIN so that

the output from the driver has the same syntax as the input typed in by the

user.

When the user is working at the English level the dialogue is translated

immediately to and from Strict PIDGIN so the assembler and disassembler are

not used. However, at the English level, all the other parts of the system are

required, i.e. the ABL expressions associated with the connectors and acts and

the resolver to compare statements. The resolver is used to search for a match

between two statements. This search may involve further searching to match

other statements. This mechanism is used to check input for consistency and to

answer questions and carry out deductions. It is thus a fundamental part of the

whole system. It can be divided into two parts, the matcher and the deducer.

The matcher can be described by giving a whole series of rules that can be

used to determine whether any two statements match. This is done in Section

2.4.2. The deducer is used to answer questions that cannot be answered

directly from the memory by matching but require further matching to be

performed first, this is described in Section 2.4.3.

2.2.1C Translator

The translation from English to PIDGIN is carried out by an ABL

program called the Analyser and the reverse translation from PIDGIN to English

by another ABL program called the Synthesiser. These programs are described

in more detail in Chapter 4 but the ideas have not been fully implemented as

equivalent translators have already been implemented by R. Schank and

others.

69

The translators can be sub-divided into parts corresponding

to the various levels of translation. An important aim in designing the

translators is to try to separate those parts of the translation process that are

language dependent from those that are language independent (PIDGIN

dependent) and to try to design the language dependent part in such a way

that it can be easily updated and amended. Ideally such extensions to the

natural language syntax that can be handled by the system should be possible

at the natural language level by a series of definitions. The translators

described in Chapter 4 make use of a dictionary in order to provide an easily

amendable interface between the natural language and PIDGIN levels.

2.2.1D Knowledge Base

The complete system consists of a fixed core of ABL programs plus a

collection of PIDGIN statements called the knowledge base. This knowledge

base grows as the system converses with the user. All the facts and rules that

determine the system's range and depth of knowledge are stored in the

knowledge base. The knowledge base can be roughly divided into a collection of

PIDGIN statements that initialise the system called the primary knowledge, a

collection that provides the system with a rough knowledge of a wide range of

facts and rules called the general knowledge, and a large number of specific

facts and rules concerned with the particular application that the system is

being asked to converse about called the specialist knowledge.

Appendix II includes a typical set of primary knowledge statements.

These create a primary set of concepts and provide a model for all future

PIDGIN statements created by the Analyser (see Chapter 4). They also form

the basis of the dynamic structure of the system by enabling certain commands

and specifying the states produced.

70

The general knowledge (see example in Appendix II) extends

the set of concepts, facts and rules started in the primary knowledge base. The

difference between the two is that the primary knowledge remains the same no

matter what application the system is used for, but the general knowledge is

orientated to the application. The general knowledge forms a "world view" that

places any particular application within a context.

The general knowledge can be roughly divided into the following parts:

i) a structured set of group and entity concepts.

ii) their attributes,

iii) the relations among them,

iv) a set of conceptions defining the possible combinations of the

concepts,

v) a set of thoughts defining suggest and action information,

vi) a set of "core beliefs" and inference rules.

The "core beliefs" and rules incorporate knowledge that guides the

system's behaviour and enables it to make predictions and answer questions

about the likely behaviour of others. Colby (1969a) has estimated the core

beliefs of a person as under 50. Typical such core beliefs inc1ude:

i) Avoidance. If one person does something that makes another

person angry then the second person will often avoid the first.

ii) Retaliation. If one person does something that hurts another

person then that second person will often want to hurt the first person.

71

iii) Taking sides. If one person does something that hurts a

second and a third person thinks the first did a good thing then the

second person will often be angry with the third.

iv) Alliance. If one person likes a second and a third person also likes

the second then the first person will often like the third but

v) Triangle. If one person loves a second and a third person also

loves the second then the first person will often hate the third.

Other general information concerns basic enable and produce

information, for example, for a person to transfer an object requires the person

to be near the object, the object to be moveable, and the person to want to

move it. Once moved the object will no longer be at the location it was at but

will be at the location it was moved to.

The world view forms a framework into which the system can slot new

knowledge and from which it can make deductions to answer questions and

solve problems (see Section 2.4.4). The setting up of the world view is the

second step in the initialisation of a working PIDGIN system. The third and final

step involves setting up a natural language to deep-structure dictionary to

enable PIDGIN to translate to and from the deep structure. This final step is

called "dictionary set-up" and is described in Chapter 4. The three steps create

a working question-answering problem-solving system to which new concepts,

new rules, new beliefs and new dictionary entries may be added at any time by

conversing with the system in English.

2.2.2 The Initialisation of the System

The basis of a working conversational PIDGIN system is an ABC

interpreter and an ABL assembler. These are currently implemented in the POP-

72

2 programming language and they are described in Appendix 1. The

initialisation consists of the 'three parts:

A. Defining the PIDGIN system in ABL.

B. Defining the English translator in ABL.

C. Creating the Knowledge base in PIDGIN.

2.2.2A Defining the PIDGIN System

There are seven parts that must be defined:

1. the eight connectors

2. the ten acts

3. PIDGIN assembler

4. PIDGIN disassembler

5. PIDGIN resolver

6. PIDGIN driver

7. initialising certain concepts

Each of these consists of associating a complex ABL expression with

some aspect of certain concepts. For example, a simplified version of the driver

in MABL could be:

<REPEAT [<ASSEMBLE> -TP. TP]>-DRIVER.

This associates the expression on the left with the reference of the

concept DRIVER. Appendix 1 gives the MABL expressions that form part of this

first stage in the initialisation of the system.

73

2.2.2B Defining the English Translator

The other major part of the system that is defined in ABL is the

translator to translate between English and PIDGIN. This consists of three parts

:

1. the Analyser

2. the Synthesiser

3. the Dictionary

Chapter 4 discusses these segments in more detail. The general

approach is taken from the methods described by Schank although the

implementation differs because of the advantage that can be taken of certain

powerful primitives in ABC and because of the structure of PIDGIN.

2.2.2C Creating the Knowledge Base

Once the seven parts of the PIDGIN system have been assembled the

system may be switched from working at the ABL.1eve1 to working at the

PIDGIN level by evaluating the PIDGIN driver. Basically, this repeatedly calls

the Input PIDGIN assembler and then evaluates the result. Further initia1ising

of the system is done at the PIDGIN level and it can be separated into three

parts :

1. primitive knowledge

2. general knowledge

3. specia1ised knowledge

These are described in the last section and in Appendix II. As each

PIDGIN statement is read it is assigned a priority by the assembler. This

74

priority specifies how important that statement is and it is used to

try to resolve inconsistencies within the system (see Section 2.4.1). At any

moment the reference of the concept USER gives the current author and the

PRIORITY aspect of that author is a number between 0 and 100 giving the

priority associated with that author.

If the priority is 100 then no checks for consistency are performed and

the statement is stored immediately in the memory. Any statement with a

priority of zero is regarded as no longer required by the system and if the

system exhausts all the storage space available for the memory then such

statements are automatically deleted. Any other priority is used to determine

which of two conflicting statements the system will reject. For example, if the

memory contains a conception with a priority modifier of 80 and a user with

priority 50 tries to tell the system a fact that contradicts that conception then

the user's fact will be rejected. In general a statement will be rejected if the

memory contains a contradictory statement of higher priority. If the statement

in memory is of equal or lower priority then the new statement is added to the

memory in such a way that when the memory is searched it will always be

found first. Further, it is possible for a user to alter his priority by using the

modifier DEFN, this stores the statement with a priority 10 greater than the

user's current priority and this enables the user to get the system to check his

statements for self-consistency.

The above simple priority system is sufficient to enable a simple linear

hierarchy of counter checks to be maintained. Users with the responsibility for

creating and maintaining the system will have a high priority whereas users

who simply make use of the system will have a low priority to prevent them

from destroying the consistency of the complete system.

75

During Part 7 of the PIDGIN initialisation the following

associations are made:

 90-GENERAL, PRIORITY .

 100-SYSTEM, PRIORITY.

SYSTEM-USER.

This means that when the primitive knowledge is read the author is

SYSTEM and the priority is 100. At the end of Part 1 (primitive

knowledge) the user is changed by the statement :

GENERAL-USER.

and subsequent statements are assigned priority 90. The specialised

knowledge may be set up by a number of users who may have different

priorities (usually less than 90).

Checks are required to prevent a user from altering his own priority.

This is done by associating a class concept with the CLASS aspect of the author

concept. There are three classes of user - SYSTEM, GENERAL and USER, and

each class is associated with a different set of checks. A user working in

SYSTEM class can alter any part of the system including class and priority; a

user with GENERAL class cannot alter class or priority and cannot return to the

ABL level (where such checks could not be made); a user with USER class is

further restricted in that such a user may only work at the English level and

cannot return to the PIDGIN level. The user name thus acts as a password and

each user is required to state his name when first entering the system.

Appendix II gives listings of parts of all three segments. The final

segment, specialised knowledge, merges into the knowledge obtained from the

end-user, the user who uses the system at the English level in order to solve a

practical problem. All of Parts I and 2 and some parts of Part 3 are at the

PIDGIN level but eventually it becomes possible to switch up to the English

76

level in order to teach the system new facts and rules. The switch is

carried out by entering a PIDGIN statement consisting solely of the user name.

This special statement is recognised by the BE act and it causes the system to

use the English driver. This driver repeatedly calls the Analyser to read an

English sentence and translate it into PIDGIN. It then evaluates the PIDGIN

which results in a PIDGIN answer which is then translated back into English by

the Synthesiser. This process is described in more detail in the next section.

2.2.3 The Construction of the System

The overall construction of the PIDGIN system is diagrammed in Fig.

4.1 (Section 4.2.1). It can be seen that it is possible to regard it as consisting

of three parts - the processor. the memory and the translator.

2.2.3A The Processor

The processor is the name given to the PIDGIN driver plus the ABC

evaluator with its associated primitives. At any moment while the system is

running the processor contains the PIDGIN statement being. evaluated.

Because the evaluation of a single statement may result in further statements

being evaluated before the first has completed evaluation a number of

statements may be in the middle of being evaluated at any moment. The

stacking and unstacking of these partially evaluated statements is taken care of

by the PIDGIN driver.

The evaluation of a PIDGIN statement either results in the statement

being stored in memory or a matching statement being retrieved from the

memory. A comparison between the evaluation of PIDGIN and the evaluation of

a more conventional programming language, such as POP-2, may make the

evaluation of PIDGIN clearer. In POP-2 a variable may be associated with a

function body (a lambda expression) by defining a function with that name.

77

When that name is followed by round brackets containing

expressions. the expressions are first evaluated and then the function is

applied. In PIDGIN the distinction between function name and parameters is

not so distinct. Functions do not have names but instead each function is

associated with a description of the parameters it requires. When any

statement is evaluated all the functions whose parameter description matches

that statement are evaluated one by one until either one succeeds or all fail.

Returning to the comparison with POP-2, it is as if functions with the general

form, e.g. :

function f a, b, c;

 j(a, b); k(c); l(b, a, c);

end;

were interpreted as something like:

function {a, b, c};

 if {a, b} and {c} and {b, a, c} then

 true else false close;

end;

where, for example, {a, b} means apply all functions whose parameter

description matches {a, b} until one returns true and if all return false then the

result is false. If {a, b} , {c} and {b, a, c} all return true then {a, b, c} returns

true. Anyone familiar with PLANNER will immediately recognise this goal-

oriented success/failure mechanism.

The advantage of this evaluation scheme is that it is closely related to

human question-answering conventions. New functions may be defined to

extend the system capabilities without destroying previous definitions. The new

function will automatically be tried if a matching statement is evaluated. The

evaluation mechanism can be thought of as trying to prove a statement by

searching for a fact (or disproving by counter-example in PIDGIN) or a rule. A

fact is simply a function that is always true, to return to the analogy with POP-

78

2, and a rule is a function that is true if a further series of

statements is true (like function {a, b, c} above).

One disadvantage of this method of evaluation is that, unlike

conventional programming languages, functions cannot be called directly. The

apparent inefficiency of this is overcome by the nature of a PIDGIN statement

as a structure incorporating knowledge. The matching that must be performed

before applying any function is an essential part of the question-answering

process.

The evaluation scheme actually used by PIDGIN is more complex than

the above description suggests, for example, it involves the conjunction and

disjunction of statements and negation. But the idea that matching is the

fundamental evaluation process is equally true. A more complete description of

the evaluation scheme of PIDGIN can be found in Section 2.4.1, and a complete

description of the matching process is given in Section 2.4.2.

Although it is possible to draw a close analogy between aspects

of PIDGIN and PLANNER it is important to recognise the differences

because it is in these that the extra power of PIDGIN lies.

2.2.3B The Memory

The memory can be divided into two parts - the immediate and the

long-term memories.

The two basic memory processes are" transmitting a statement to

memory and retrieving a statement from memory. These can be performed

explicitly using the TRANSMIT act (see Part 2.3B10) and they occur implicitly as

evaluation proceeds (see the last division).

79

The efficiency of the memory largely determines the overall

efficiency of the system. One efficient way of implementing the memory is to

avoid multiple copies of a structure. This could be done during translation when

new structures are created by first searching the memory for the structure. If

this were done then the memory search for the complete structure would be

much simpler. In such an implementation the actual structure representing a

statement might be considerably different from that suggested by the syntax.

For example, an actor could be set up as a basic data structure which combined

all the qualifiers of its main concept, although it would be necessary to include

references to the conceptions containing the actor in order to allow the

modifiers to be checked. This flexibility of the PIDGIN implementation is not

present in systems based on PLANNER where the data-base pattern is not

restricted to any fixed format.

All the above details of implementation obscure the central problem of

efficiency, which is to find a way to overcome the combinatorial effect of a

growing memory on the time taken to solve a given problem. Schwarcz (1970)

points out that this combinatorial explosion comes not from the memory search

for facts but from the investigation of inferences during problem solving. He

suggests that a structure larger than his triples might mitigate and PIDGIN

does comply with this suggestion but this only pushes back the explosion to

slightly larger memory sizes. A complete analysis of the problem has not been

done for PIDGIN but it is hoped that the increasing complexity of the memory

as its size increases can be used to offset the inefficiencies resulting from the

increasing size. By matching the implementation with the nature of the use of

the deep structure it is hoped that the knowledge contained in the memory can

be used as a heuristic to speed up searching by guiding the search to the right

place. For example by controlling this search a1goritlunusing the "substitutable"

relation (SUB) it will improve as the system is supplied with more concepts

80

because this will automatically limit the number of concepts that are

substitutable for any particular concept used.

2.2.3B1. Immediate Memory (IM)

a. Short-term Memory (STM)

STM enables conflicting facts (or different "possible worlds") to be

stored in the memory without the inconsistencies interfering with each other.

This is done by storing them outside the long-term memory (LTM) in the form

of a tree structure so that any memory search always proceeds down a single

path from the current leaf to the root. If the fact is not found in the STM tree

then the LTM is searched, this can be diagrammed as:

In this situation the facts A, B, C, and D will be examined before LTM is

searched.

As execution proceeds the STM tree grows and at any given point in the

evaluation there is a current node and a current branch. A new node is set up

in the following circumstances:

i) When a rule is evaluated a new node is added to the tree so that

any statements added to the memory while inside that rule can be

easily removed if it fails.

81

ii) Similarly when evaluating a class of statements (i.e. a

disjunction of statements) a new node is set up and any member of

that class that stores a statement will do so to a different branch,

iii) and when evaluating a band of statements (i.e. a conjunction of

statements) a new node is set up so that any statements stored can be

easily removed if the band fails.

If a rule, band or class succeeds then the current branch and node are

not altered but if they fail then the current branch and node are set to the value

they had before evaluating the structure. When an evaluation is complete all

the statements stored between the current branch and the LTM can be added to

the LTM.

b. Suspended Evaluation Memory (SEM)

Complete evaluation may be suspended, for example, to ask the user a

question. This is done by saving the STM in a band called SEM. A new STM can

then be started and used to evaluate the new input. Every saved STM in SEM is

associated with what is called a reviver. This is a statement which if matched

will restore the suspended STM and continue evaluation.

For example, if the sentence:

John flew to London.

was input the system might generate the question:

Was John a pilot or passenger?

and suspend the current STM with the reviver:

JOHN < SUB (A PILOT A PASSENGER».

82

When any sentence is input it is first stored and then

compared with all the revivers in SEM. If any match the associated STM is re-

activated. As the required information will then be in the memory evaluation

will be able to continue. To avoid confusing the user by reviving old evaluations

the size of SEM is arbitrarily limited to five members, any new member after

the fifth will replace the oldest member.

c. Current Evaluation (CE)

The current context of evaluation is determined by:

(i) the current STM tree plus the current branch and node.

(ii) the current references of all concepts.

(iii) the current statement plus all suspended statements.

(iv) the current LTM.

The manner in which the references and the nesting of statements are

stored is partly described in Appendix I when the ABC system and the PIDGIN

driver are discussed. To a large extent it is handled by the ABC system in a

manner which is transparent to the workings of PIDGIN.

d. Context Information (CI)

The translation from English to PIDGIN and vice-versa requires context

information to resolve and to create various references such as definite article

and pronoun references. This information is held as the global reference of

concepts, for example, the global reference of HUMAN might be JOHN. The

global reference of certain special concepts is also held by the translator, for

83

example, HE, SHE, IT, ONE, THEY and WE, in order to provide a

sentence context for resolving anaphoric references.

If the sentence being analysed is the reply to a question then it might

be elliptical if it immediately follows the question. The information for replacing

the missing parts of the elliptical reply is obtained by the Analyser from the

reviver of the last entry in SEM. For example, the reply to the question in

segment (b) above might be:

A pilot.

The reviver supplies the missing information.

Definite article references may need to be resolved from LTM. For

example, "the girl next door" might cause the Analyser to ask the question A

[YOUNG] WOMAN <LOC NEXTDOOR> which might find MARY <LOC

NEXTDOOR> in the memory and resolve the reference.

2.2.3B2 Long-term Memory (LTM)

LTM contains all the statements that have been input to PIDGIN. They

can be imagined as a linear list, in index-number order, to which new

statements are added at the high-index number end. At the start are the low

index statements of the primary knowledge, followed by the general knowledge

and the specialist knowledge. The dictionary used by the translator is also

stored in the LTM although its format differs from that of normal statements.

When LTM is searched the search starts at the high index-number end and

proceeds towards the low index-number end. So if the memory contains two

statements that would match, the one with the higher index-number will be

found first and terminate the search; the higher numbered statement is said to

"hide" the lower.

84

Although this simple description of the LTM provides a clear

model of the system's behaviour when searching it would be very in

efficient if implemented this way and further it does not exhibit all the

properties desired of the memory. Instead the LTM is organised as what is

called a "merged" memory rather than a linear memory. The LTM is first

partitioned into eighteen parts corresponding to the eight connectors and the

ten acts. Each partition contains a merged list of all the statements which have

that connector or act. The structure of the merge lists is best described by

explaining how a new statement is added; there are three possibilities:

i) the statement matches nothing in the list; in this case the

statement is added to the end of the list at which the search started,

i.e. the newest are found first.

ii) the subject of the statement is more specific than a matching

statement in the list; in this case the new statement is added before

the old so that it will be found first in future searches.

iii) the subject of the statement is less specific than a matching

statement; in this case the search continues until either a less specific

or a miss-matching statement is found when the new statement is

inserted before it.

One actor is less specific than another if it is either substitutable for the

other or they are the same (or equivalent) and the second is more qualified

than the first. For example, ANIMAL is less specific than CAT and [BLACK] CAT

is more specific than CAT.

It can be seen that a merge list is a linear list if none of the statements

in the list matches another.

85

The merge list for the act BE is called the "world model"

because it contains all the states that describe the attributes of the objects

known to the system.

From what has been said it can be seen that the memory only grows. It

would be useful in practise to have a "garbage collection" system that

destroyed unnecessary statements when computer storage was full. This would

be possible with the above merged lists by destroying specific statements if

more general statements where present. This would result in the system losing

specific information but retaining general information. It would also be possible

for the system to generate general statements in order to replace two or more

specific statements with a single general one. For example, if the statements:

JOHN <POSS A CAT>.

JOHN <POSS A DOG>.

were stored in the memory they could be replaced by:

JOHN <POSS A PET>.

A similar approach to garbage collection is to destroy the attributes and

specifiers of statements. The advantage of these approaches to garbage

collection is that they do not simply destroy knowledge but gradually make it

more imprecise and general.

2.2.3C. The Translator

During translation to and from PIDGIN a number of buffers are used to

contain intermediate structures, the main sequence is : character buffer, word

buffer (surface structure), item buffer (shallow structure), and then the

processor (deep structure, PIDGIN). The output synthesis works in the reverse

sequence using a different set of buffers. The precise way in which the buffers

are used is described in Chapter 4.

86

2.3 The PIDGIN Concepts

Before describing how questions are answered and problems solved by

the process of matching statements it is first necessary to consider the simplest

unit in PIDGIN, the concept.

In all the examples where English is compared to an equivalent PIDGIN

statement (see Section 2.1.3) it looks as if the PIDGIN statement is a sequence

of words taken from the English sentence, re-ordered, bracketed and written in

upper-case. This is misleading as it hides the fundamental distinction between

the words in the English sentence and the concepts in the PIDGIN statement; it

is more than just a matter of upper or lower-case. The upper case words in the

PIDGIN statements are symbols of "universal human concepts". A universal

human concept or concept is a language independent meaning. Two English

sentences with the same meaning or in fact any sentences in any language with

the same .meaning will translate into the same PIDGIN statement. The reason

for using English words for some of the concepts is simply for convenience, but

it can lead to confusion if the distinction is not borne in mind.

There are some schools of thought that maintain that no two sentences

have the same meaning and that the same sentence used on two separate

occasions will have a different meaning on each occasion. I am not using the

word "meaning" in this way. Two sentences have the same meaning if they

convey the same explicit information. One practical method for judging if two

sentences have the same meaning is to consider the circumstances in which

one would be true and the other false. If there are no such circumstances then

they have the same meaning and if the only such circumstances depend upon

the disposition of some human actor referred to in the sentences then they are

said to have nominally the same meaning. This definition is used to try to

simplify the problem sufficiently to produce a working question-answering

87

system. More subtle difficulties can be considered later by the

modification of the working system.

During the analysis of English into PIDGIN, concepts may be introduced

that do not occur explicitly as words in the English sentence, and words in the

sentence may be lost. During synthesis of PIDGIN into English some concepts

may not be realised as words and some concepts may be translated as

complete English phrases. Further, a single English word might be the

realization of a number of concepts; this is called "lexical" ambiguity. For

example, the word "light" may mean LIGHTWEIGHT, LIGHTCOLOUR or

LIGHTBULB. The converse is not true, that is PIDGIN is not ambiguous, no two

concepts with different meanings have the same name. Some concepts are

realised in English as word endings and inflexions, for example, those of

number, gender and tense.

The rest of this section deals with all the different classes of concept

handled by PIDGIN - connector, act, nominal, relation and modifier.

2.3A The Connectors

The connectors are those concepts that are used .to link together

conceptions in order to form thoughts.

They are used to state knowledge and to control problem solving. There

are eight connectors - SUGGEST, ENABLE, PRODUCE, CAUSE, THEREFORE,

THROUGH, WHILE and IF. Each connector is associated with an ABL program

that is evaluated if a thought containing that connector is evaluated (see

Section 2.1.1 for the evaluation rules). In general if a thought is asserted then

that thought will be stored in the memory and if a thought is evaluated as a

question then the memory will be searched for a matching thought.

88

Before describing how the knowledge stored in the form of

thoughts is made use of by the rest of the system it is necessary to explain the

justification for just the eight connectors chosen. The connectors arise from a

simple world description that arose from a consideration of the types of

connectors described by Schank (1973b) and Abelson (1973). The world

description is as follows:

i) At any moment of time, t, the world can be described completely

by a band of states. This band is called the world model.

ii) Two moments of time are described by different band of states.

iii) An action is a function from one world model to another. An action

can be enabled by zero or more states in a world model, that is, the

action cannot occur unless those states are in the first world model. An

action can produce zero or more states, that is, it can add those states

to the second world model.

iv) Any action may cause or block another action.

v) A cause or block may cause or block an action.

vi) Between any two moments of time there is another moment of

time. Thus as an action takes a finite length of time it can be analysed

into sub-actions, that is, functions between world models occupying

intermediate moments of time. These sub-actions may be specified by

saying how an action is achieved through or by means of one or more

other actions. The above points can be diagrammed as:

89

This shows how five of the connectors are related; the other three are

fitted into the above model later in this section.

2.3A1. SUGGEST (state-state)

All the connectors playa dual role in the system; they enable natural

language sentences to be stored in the memory in a suitable form for later

interrogation and they act as controlling and guiding information for the PIDGIN

problem solver described later.

The SUGGEST connector is used to link two states (a state is a

conception in which the act is BE) together. The linkage roughly corresponds to

implication or causation, thought not logical implication which is handled by the

IF connector. An example of a natural language sentence which would be

translated into a thought involving SUGGEST is:

"In chess control of the centre often leads to victory."

It will be seen later how such information is used by the PIDGIN

problem solver to form schemes and from these, plans.

In fact SUGGEST may be used to join state-choices, that is, a

conjunction and disjunction of states. For example:

THE QUEEN1 <BELONG A PLAYER1> <ON THE BOARD> AND

90

THE QUEEN2 <BELONG A PLAYER2> <ON THE

BOARD>[NOT]

 SUGGEST THE PLAYER1 <WIN THE GAME>.

SUGGEST is like CAUSE only between states rather than between

actions.

2.3A2. ENABLE (state-action)

This connector is used to specify what state(s) must hold before an

action can be performed as a command (see Section 2.4.1). Abelson (1973)

tries to systematize the basic states that must hold for each of the acts

described by Schank to be performed. He distinguishes between two types of

enab1ement - instrumental control, where the state represents the main actor

of the action being in a position to use the instrument(s) of the action, and

social contract, where the state represents the actor of the action being the

agent of a prior actor in a sequence of actions. PIDGIN does not distinguish

between these two types but regards both as examples of a more general

notion of enab1ement.

There are no enabling conditions built into the system and if no

enabling conditions are specified for an .action then that action cannot be

obeyed as a command. However, if a matching action has the modifier CAN

then the action is allowed regardless of enabling states.

If some action is inappropriate in certain circumstances then it is

necessary to define explicitly those circumstances using the ENABLE connector.

For example, enabling conditions can be defined to prevent the system from

making illegal chess moves:

A [COLOUR] PIECE <ON A SQUARE1> [NOT] BE

 ENABLE

 THE PERSON <POSS A [COLOUR] PIECE1>

 TRANSFER THE PIECE1 A SQUARE2 THE SQUARE1.

91

That is, for a person to move a piece to a square the square

cannot already be occupied by a piece of the same colour.

Before the system carries out any action it first searches the memory

for a matching action with the modifier CAN; if none is found it searches for all

matching enabling thoughts, if any are found then a further check is made to

confirm that all the states enabling that action are true.

Although some enabling conditions apply in most circumstances, for

example, for a person to grasp an object they must be physically close to that

object, most enabling conditions depend upon the circum stances. For example,

the above chess rule does not apply if there is no game of chess taking place.

To cope with this problem the enabling condition must be made more complex.

The state requirement of an enabling condition may be in fact a state-choice, so

the above condition could be modified to:

A PERSON DO A CHESSGAME AND

A PIECE<BELONG THE PERSON><ON A SQUARE>[NOT]BE

ENABLE

THE PERSON TRANSFER A PIECE2<BELONG THE PERSON>

A SQUARE2 THE SQUARE.

This also illustrates the fact that it is possible to state a condition in a

number of different, but equivalent, ways.

2.3A3 PRODUCE (action-state)

This is used to specify those states that result from obeying an action

as a command. Like enabling conditions there are no produce conditions built

into the system but there are a number of basic enable and produce conditions

in the general knowledge. Produce information is in some ways analogous to

PLANNER's antecedent or asserting theorems in that it specifies how the world

model is to be amended after a command has been obeyed. As this determines

both how fast the memory grows and the range of questions that the system

92

can answer about its actions, a compromise must be reached.

Certain states do not need to be specified as they can be deduced from the

information available in order to answer a question, but the total set of states,

the world model, must reflect a true picture of the world otherwise

inconsistencies will not be detected and commands will not be enabled. This is

because when the system checks for inconsistencies and when it checks

enabling conditions no deductions are performed, they are simply checked

against the current world model. So, if more enabling conditions are specified

then more produce conditions must also be specified in order to ensure that the

world model contains the necessary states.

A typical primitive produce condition that would probably be in the

general knowledge is:

A PERSON TRANSFER AN OBJECT A PLACE1 A PLACE2

PRODUCE THE OBJECT <LOC THE PLACE2>.

2.3A4 CAUSE (action-action)

The cause connector has been thoroughly discussed by Schank

(1973b). It is realised in English in a great many ways, some explicit such as

"because", "when" and "since" and some implicit e.g. "fly", "prevent" and

"want". It is the combination of the few acts defined by Schank with the cause

connector that enables him to encompass the meaning of so many English

verbs with so few acts. For example:

"John killed his teacher."

becomes:

"John does an action that causes his teacher to change from the

state of being alive to the state of being dead."

93

2.3A5 THEREFORE (cause-action)

This connector is used to link a cause with an action, for example:

"As John stopped Mary going I'll go."

becomes:

"John carried out some action that caused Mary to not transfer

herself from some place to another and therefore I did transfer

myself from some place to that place."

or, in PIDGIN:

JOHN DO SOME ACTION

CAUSE MARY [NOT] TRANSFER SELF A PLACE1 A PLACE2

THEREFORE SELF TRANSFER SELF A PLACE3 A PLACE2.

2.3A6 THROUGH (action-action)

This connector is used to specify the means by which an action is

carried out. It corresponds to what Schank calls the instrumental case. It is

treated here as a connection between conceptions rather than as a part of a

conception because every action can be divided into sub-actions and these sub-

actions into further sub-sub-actions and so it is more convenient to deal with it

in the same way as other relation ships between conceptions, namely by means

of the thought structure. Many verbs translate to the same basic act but with a

different THROUGH action, for example, walk, run, fly, drive and ride are all

concerned with the basic action of transferring an object from one place to

another, but they all differ in the means by which this is achieved. This is

expressed in the deep structure by the use of different THROUGH actions, for

example, walk is transfer THROUGH moving one's legs, run is transfer

THROUGH moving one's legs quickly. Further, some verbs correspond to very

complex deep structures if their full meaning is to be extracted, for example,

"drive" refers to a whole series of complex actions the total of which is to do

with controlling a car. However, this is not a limitation of the notation but a

94

positive advantage. The complexity of the structure corresponds to

the level of the systems knowledge of the concept.

Driving involves a whole series of interrelated actions, and what any

person understands by the word depends upon that person's knowledge of

these activities. A child, an experienced driver and a racing-car driver all have a

different understanding of the verb "drive". In fact it could be argued that every

individual has a slightly different under standing because of their different

experiences, but common to all of these there is the basic notion that driving

concerns moving from one place to another using some vehicle. Similarly the

structure that PIDGIN generates for the ver9 "drive" represents the systems

knowledge of driving. This may change as the system is given more knowledge,

for example, the system could be given more information concerning the sub-

actions THROUGH which the basic action of transferring is carried out in the

context of driving.

An interesting aspect of the THROUGH knowledge of the system is that

it provides a basis for adding the capability for actually manipulating the world

by means of some robotic facility. The breaking down of actions into sub-

actions is precisely the analysis required in order to determine the basic actions

that the robotic facility is capable of performing. In such a system there would

be a continuous linguistic link between the complex actions that the system was

capable of talking about and the simple actions that it was capable of

performing. This link would be provided by the THROUGH connector. For

example:

Lift block THROUGH Find block and Move hand to

 block and Grasp block and

 Move hand up.

Find block THROUGH If not Perceive block Move

 visual receptor

95

2.3A7 . WHILE (conception-conception)

This connector is used simply to join two conceptions that took place at

the same time. It could be incorporated in the conception by extending the

possible time modifiers to include complete conceptions. However, this would

subordinate one of the conceptions to the position of a modifier and it is often

the case that both conceptions are of equal importance. It would also be

possible simply to store both conceptions together with the fact that they both

occurred at some particular time, t. However, the WHILE connection implies

that not only did the conceptions occur at the same time but that they were

also connected in some undefined way. For example, "I ran the bath while the

child got undressed" implies the bath was run for the child, "I made the tea

while the others prepared the sandwiches" implies a communal meal, and "Nero

fiddled while Rome burned" implies something other than simply that they

occurred at the same time. The WHILE connector enables the system to store

this knowledge without needing to explicate the implication.

2.3A8 IF (conception-rule)

This connector forms the basis of the system's deductive capability. It

corresponds to the consequent theorems of the PLANNER programming

language. The way in which IF rules are used is described later (Deduction,

Section 2.4.3), but their use can be simply illustrated by means of an example:

A PERSON1 <TALLER A PERSON2> IF

THE PERSON1 <HEIGHT =N METRE>

AND THE PERSON2 <HEIGHT <LESS N> METRE>.

is one of the possible ways of defining the relation "taller". Then if:

MARY <HEIGHT 1.7 METRE>.

JOHN <HEIGHT 1. 8 METRE>.

it is possible for the system to deduce the answer to the question:

96

JOHN <TALLER MARY>?

by using the IF rule. This is done by first matching the question against

all the conceptions in the memory to see if it can be answered directly and

then, if none match, to see if it can be matched against any IF rule. In the

above example the question does match the IF rule (the exact rules for

matching are described in Section 2.4.2), in this case the specific information

contained in the question is substituted for the more general concepts in the

rule giving:

JOHN <HEIGHT =N METRE>

 AND MARY <HEIGHT <LESS N> METRE>?

that is, has Mary a height that is less than the height of John. This

new question is answered from the memory using the same procedure

as before but in this case it can be answered directly from the two assertions.

This results in the IF rule succeeding and thus the original question succeeding.

This would normally result in the controlling program generating the response:

JOHN <TALLER MARY>.

or, in English:

Yes.

2.3B The Acts

The ten acts of PIDGIN (including BE) are based on the acts defined by

Schank (1973b). They are not intended to exhaust the possibilities of all English

verbs but to enable enough verbs to be handled to build up a reasonable

vocabulary for a question-answering system. The question as to the minimum

number of acts required has not yet been answered. However, Schank suggests

that the number may be very small, perhaps less than twenty. Less than

twenty certainly seems sufficient to encompass a large part of everyday

97

English. Schank has 14 - 16 acts in his notation but five of these are

concerned with the senses and I have compressed these into one act

(PERCEIVE). Also he has the acts PROPEL and GRASP which I have omitted; the

idea of applying a force is included as a modifier and GRASP is included in

MOVEing the hand around an object. I have introduced the act IDENTIFY as it

seems necessary to cope with the type of pattern matching comparisons

required in many problem domains, for example, the chess end-game

considered later. Further I have changed the names of some of Schank's other

acts in order to try to make their meaning more obvious from their name.

It is interesting to compare with the above the ten operation words . of

Basic English (Ogden 1933), "make", "put", "take", "keep", "let", "give", "get",

"go", "come" and "do" which, with the auxiliaries and directives, immediately

give the equivalent of 200 English verbs. It can be seen that nine of the ten are

roughly handled by the two acts PASS and TRANSFER in PIDGIN.

The acts are the base of the system as they define all the possible ways

in which actors may be combined. Because there are so few and because no

more are required, the complete description of these acts is simple to set out

and will remain valid no matter how far the system is extended. All growth of

the system's knowledge proceeds through new combinations of the ten acts

with a growing number of actors. Although the acts have names which are

English verbs this is only a mnemonic convenience to help the reader. The

actions performed by the acts are close to just one of the many different

meanings and shades of meaning of the verbs. The following diagram shows a

simple framework that expresses one way in which nine of the acts are related:

98

This should be seen together with the description at the beginning of

the last division where the idea of an action as a state change is put forward in

order to discuss the possible connections between actions. The above diagram

shows the possible actions. The only act not included is PASS; this is because

this act expresses the complex idea of ownership and this involves at least two

thinkers. The diagram shows the possible ways in which any state may be

transformed into another. The time axis is horizontal with the later time on the

right, although COGITATE may extend over a long time period and involve

many TRANSMIT acts. The diagram represents the way in which the acts fit

together and it is shown simply to give the reader some idea of the motivation

for choosing the ten acts described next.

There are two other acts shown in the syntax (Section 2.1.1), TRANS

and TROW, these are not acts but stand in place of acts. TRANS may be

substituted for any of the acts MOVE, PASS, TRANSFER, and TRANSMIT, and

TROW for any of COGITATE, IDENTIFY, PERCEIVE and DO.

2.3B1. BE

ANY THING BE.

This act is separate from the others in that it is used to construct a

state rather than an action; in this sense it is not really an act at all. It is used

to give an actor the status of a conception. The above conception gives the

99

most general form of a state, where the concept THING can be

substituted for any other entity or group concept. In general it is used to

specify the attributes or relations of an entity or group concept at any particular

time. For example:

MARY <AUNT JILL>.

A [RED] BOX <ON THE TABLE>.

[HAPPY] JOHN .

FIDO <SUB A DOG>.

The set of all such states known to be currently true by the system is

called the "world model" because it represents inside the system a picture of

the current static state of the external world. Note that the input language

syntax allows BE to be omitted.

2.3B2. BECOME

ANY THING BECOME SELF.

This act is the most primitive of all the acts and the most general. It

enables the initial and final state of a transformation to be specified without

needing to describe how the transformation was achieved.

It is usually used to specify some change in one or more of the

qualifiers of an entity or group concept. The act is restricted in that the object

must always be the same nominal as the subject, so by the rules of the input

language the object nominal is always SELF. For example:

A [RED] BOX <LOC FLOOR> BECOME SELF <LOC TABLE>.

BOX1 BECOME SELF <ABOVE BOX2>.

BOOK <BELONG JOHN> BECOME SELF <BELONG BILL>.

BECOME is useful when an action is required but it is not known or not

important which act is involved. For example, the CAUSE connector requires an

action and BECOME can be used to supply it in the cases where it is only the

final state that is important, for example:

100

Matches cause fires.

SOME MATCH <LOC A PLACE> BECOME [ALIGHT] SELF

 [CAN] CAUSE THE PLACE BECOME [ALIGHT] SELF.

2.3B3. COGITATE

ANY THINKER COGITATE A THOUGHT.

Like all the acts COGITATE can be used in two ways by the PIDGIN

system, as "data" forming part of a deep structure representation of some

linguistic knowledge and as "program" when that same deep structure is

evaluated. The action taken depends upon the context of evaluation; if the

conception is an assertion then the acts add the conception to the memory; if a

question then a matching conception is retrieved from memory; but if it is a

command then the action taken depends on the particular act. In the case of

COGITATE there are a number of possibilities, depending on the object:

i) Judging. If the object is a conception then it is checked to see if it

is positive or negative (see Division 2.4.4A), if positive the conception

succeeds, if negative it fails.

ii) Decision. If the object is the concept ACTION then if its reference

is a conception the action taken is the same as in (i), if the reference is

a choice of actions then the best (most positive value) is selected and

made the reference of ACTION. If the reference is anything else then

the action taken is as in (i) and the conception found is made the

reference of ACTION.

iii) Planning. If the object is the concept PLAN then COGITATE will

form a plan (see Section 2.4.4) and make it the reference of PLAN. If

the reference of PLAN is already a plan (a choice of actions) then the

plan will be checked and corrected if unsatisfactory.

101

iv) Scheming. If the object is the concept SCHEME then a

new scheme is formed (see Section 2.4.4) and made the reference of

SCHEME. If the reference of SCHEME is already a scheme (a choice of

states) then the scheme will be checked and corrected if unsatisfactory.

v) Generalising. If the object is the concept POSSIBILITY then a

conception is selected at random and generalised (see Section 2.4.1)

and made the reference of POSSIBILITY. If the reference is already a

conception then that conception is generalised.

In the above where ACTION, PLAN, SCHEME and POSSIBILITY are

mentioned any concept for which these are substitutable is accepted.

If a plan or scheme cannot be formed, or if a conception cannot be

consistently generalised or an action is negative then the COGITATE conception

will fail.

As "data" the act is used to incorporate the meaning of many English

mental-action verbs, for example, "ponder", "consider", "plan", "think",

"wonder", and "decide", although some uses of these verbs can be better

realised by TRANSMIT or DO. Some examples of the use of COGITATE are:

John wondered whether to go to the cinema.

JOHN COGITATE <JOHN TRANSFER SELF A PLACE CINEMA>.

John loves Mary.

JOHN COGITATE <MARY BE>

 CAUSE JOHN BECOME [LOVE] SELF.

John wondered if he'd done the right thing.

JOHN COGITATE <JOHN [PAST] DO AN ACTION>.

John decided to give Bill the book.

JOHN COGITATE <JOHN PASS BOOK SELF BILL>.

2.3B4. DO

ANY LIFE DO ANY THOUGHT.

This act is used to carry out a thought, which may be a conception,

program (i.e. a conception-choice) or plan:

102

i) Conception: The conception is evaluated; this is
equivalent to:

SELF TRANSMIT A THOUGHT HERE SELF.

ii) Program: the program is evaluated; if it fails then any side effects

are automatically undone.

iii) Plan: the first action of the plan is removed from the plan and

evaluated.

This act occurs in the deep structure of verbs involving a number of

unspecified actions, for example, "make", "build", "grow" and "drive" and also

verbs in which the actions involved are even less specific, such as "like" and

"want". In some cases it may be possible to say what some of the actions are

but not all. In these cases DO expresses the fact that not all the actions

involved have been specified, for example:

John grows roses

JOHN DO <JOHN TRANSFER FERTILISER A BAG

SOME GROUND <NEAR A ROSE>

AND JOHN TRANSFER SOME WATER A PLACE

SOME GROUND <NEAR A ROSE>>

CAUSE SOME ROSE BECOME [GOOD] SELF.

In this way it is possible to add to the systems knowledge of what

growing involves and yet at the same time to include the fact that growing is

more than that.

2.3B5. IDENTIFY

(ANY THINKER ANY LIFE) [CAN] IDENTIFY ANY PATTERN.

The object of IDENTIFY is compared by the subject with its perceived

view of the world. If the subject is not a THINKER then this view must be the

visual field of the subject as perceived by the PERCEIVE act. Otherwise, it may

be an internal mental view. For example:

FIDO<BELONG JOHN>IDENTIFY JOHN<NEAR DOG>.

103

but:

JOHN IDENTIFY FIDO<BELONG JOHN><FAR JOHN>.

That is, JOHN can compare an internal mental image of his dog with

other internal mental images (say to describe his dog or to identify a picture of

his dog), but his dog can only compare its internal mental image of John with

its visual impression of John. Thus IDENTIFY is used to represent the deep

structure of verbs such as "recognise", and "identify".

However, the IDENTIFY act was not introduced so much for its use in

allowing the deep structure of certain verbs to be represented more accurately,

but because it could be associated with a new range of capabilities for the

PIDGIN system, namely a powerful pattern-matching ability. This pattern-

matching ability was found to be desirable when tackling complex problems

such as the chess endgame problem because without it a long-winded linguistic

description was required together with an even more complex set of IF rules so

that the linguistic pattern matcher could deduce that "above and to the left" is

the same as "left and above" and so on, on the chess board.

From the syntax rules (Section 2.1.1) it can be seen that a pattern may

be either a lattice, a grid, a line or an actor. A lattice is a three-dimensional

pattern, a grid is a two-dimensional pattern, and a line is a one-dimensional

pattern of actors. When the IDENTIFY act is evaluated as a command the

pattern which is its object is compared with the pattern which is the current

reference of the concept VIEW. Depending on the modifiers of IDENTIFY, its

object pattern and the VIEW pattern the IDENTIFY conception will either

succeed or it will fail. A simple pattern is:

<<A B C> <D E F> <G H I>>

Which represents the grid:

104

A B C

D E F

G H I

As the members are actors they may be bands or classes of actors, for

example:

<<WALL WALL WALL>

<TABLE [CUP SAUCER] TABLE>

<TABLE TABLE (SPOON FORK)>>

If this pattern was the reference of VIEW then the command:

SELF IDENTIFY SOME CUTLERY.

would succeed leaving the reference of the concept CUTLERY equal to

(SPOON FORK). Of course, if the conception had been:

SELF IDENTIFY A FORK.

it would have failed (according to the matching rules for actors, Division

2.4.2B). A pattern can be set up in VIEW by the TRANSMIT act (see Part 10),

for example:

SELF TRANSMIT * <<A SQUARE WKING A SQUARE>

 <A SQUARE WPAWN A SQUARE>>

 HERE VIEW

would transmit the 2x3 grid to VIEW.

The view (the pattern that is the reference of the concept VIEW) can be

regarded as the systems "camera" picture of the world and also as its internal

imagination. However, it will become outdated as soon as any actor in the view

is moved. To prevent this if any object is transferred all view are examined and

suitably updated. These changes are side-effects so if the rule containing the

transfer later fails then they will all be undone automatically. This is useful

during problem solving because it enables the system to tryout possibilities "in

its imagination" so that they can be rejected if unsuccessful.

105

The matching ability of IDENTIFY is based on the PIDGIN

conception matcher described in Section 2.4.2. A conception can itself be

thought of as a pattern that is a linguistic picture of the world, each actor in it

is a quantified and qualified nominal concept (called Picture Producers by

Schank), and the act specifies the framework in which the actors sit in certain

relationships (subject, object, modifier and so on).

If the object pattern is a single actor then it is simply compared with

each actor in the view and will succeed if anyone succeeds. However if both the

object and view have dimensionality then the possible comparisons become

more complex. To begin with the object pattern must be the same or a lower

dimensionality than the view and further, if they have the same dimensionality

then the object pattern must have the same number or fewer members. The

object pattern is then "passed over" the view in the following order:

A lattice is a series of applications which are grids; the first (that is the

first to be matched) is the FRONT-most, the last the BACK-most.

A grid is a series of lines; the first is the ABOVE-most, the last the

BELOW-most.

A line is a series of actors; the first is the LEFT-most, the last the

RIGHT-most.

FRONT, BACK, ABOVE, BELOW, LEFT and RIGHT are relations used to

specify the relative positions of two actors. If the view is a lattice all six apply,

if a grid then only ABOVE, BELOW, LEFT and RIGHT, if a line only LEFT and

RIGHT, and if an actor then none of them.

IDENTIFY may be modified by a degree and a type modifier in order to

further describe the matching algorithm required. The degree modifier may be

106

MATCH, SIMILAR, ROTATE or MIRROR and MATCH is assumed if the

degree modifier is omitted. The type modifier may be SAME, RSUB, VAGUE,

TYPE or LIKE to specify how each actor is to be compared. RSUB is assumed if

the type modifier is omitted. Thus a total of 20 different styles of matching may

be performed.

a. Degree Modifiers

i) MATCH. This is the default if the degree modifier is omitted. It

specifies that the object pattern and view are to be compared in all the

possible ways that, without rotation, the object pat tern can be entirely

"covered" by the view. One pattern entirely covers another if and only if

every member of the second pattern has a corresponding member in

the first pattern. Another way of describing this is to imagine the view

as an infinite lattice (or grid, or line) every point of which contains the

concept THING except for those points explicitly specified by the

pattern itself. The concept THING can be substituted for any other

concept so, as it is being matched against, it will fail (unless matched

by the concept THING). Similarly, the object pattern should be

imagined as an infinite lattice (grid, line) of THING points. Matching

starts at the front, top left and the object pattern is "slid" over the view

in the order described above (cf. reading a book). This continues until

the back, bottom, right is reached, when the IDENTIFY conception will

fail, or until a match is found, when it terminates the search and

immediately succeeds. A 2x2x2 object pattern can thus be compared at

eight different positions on a 3x3x3 view pattern if the degree modifier

is MATCH.

ii) SIMILAR. This is the same as MATCH but will succeed the first

time that more than half the actors of the object pattern are matched.

107

iii) ROTATE. This is like MATCH but at each position the

object pattern will be rotated to try to match it. If the object pattern is

a line this will involve a maximum of the same number of comparisons

as a MATCH; if it is a grid it will involve four times as many and if a

lattice twenty four times as many. iv) MIRROR. This is like ROTATE but

it also tries rotating the object pattern in the next higher dimension.

This is only used typically for a line, when twice as many comparisons

are possible, and for a grid, when twice as many comparisons as for

ROTATE are possible. To MIRROR compare a 31<:3 object grid with an

8x8 view grid involves a maximum of 6x6x4x2 or 288 positions for

comparison.

b. Type Modifiers

i) SAME. The above degree modifiers are used to specify how the

two patterns are to be moved over each other, the type modifiers are

used to specify how each pair of actors is to be compared for a

successful match. SAME indicates that two actors should only match if

they are the same or equivalent (see Section 2.4.2).

ii) RSUB. This is the default assumed if the type modifier is omitted.

RSUB specifies that the comparison to be made should be the same as

that used by the matcher when comparing actors in conceptions (see

Section 2.4.2).

iii) TYPE. One of the facilities of the matcher is to be able to check

that two actors are "vaguely" the same; two sorts of vagueness are

handled, TYPE and LIKE, plus their combination VAGUE.

Most general terms in English are vague in terms of their extension that

is in terms of what does and what does not count as a member of the

108

set named by the general term. An analogous feature in

PIDGIN is created by regarding a concept to be TYPE vaguely the same

as another concept if it is a member or subset of the concept which is

the immediate superset of the first concept. To put this in PIDGIN

terms means rephrasing "subset" and "superset" in terms of

substitutability. If there are two concepts, A and B, related by the

substitutable relation SUB in the form:

 A <SUB B>

then B is substitutable for A and is called the category of A. So for

example, the category of JOHN might be MAN, and the category of DOG

might be ANIMAL. One concept is a TYPE-vague match to another if the

category of the first is substitutable for the second. The only restriction

is that if either concept is an entity concept then the other must be. For

example:

 FIDO <SUB A DOG>.

 ALL DOG <SUB AN ANIMAL>.

 ALL CAT <SUB AN ANIMAL>.

 ROVER <SUB A DOG>.

then ROVER is TYPE-vague the same as FIDO, and DOG is TYPE vague

the same as CAT, but FIDO is not TYPE-vague the same as CAT.

Note that as the number of group concepts increases so TYPE

vagueness decreases. For example, if dogs are distinguished as

ALSATION and POODLE then Alsatian dogs will only be TYPE-vague the

same as other Alsatian dogs.

iv) LIKE. With LIKE-vague comparisons only the qualifiers are

compared. Two concepts are LIKE-vague if more than half of the

qualifiers of the concept with the least number of qualifiers (but at least

one) match some qualifier of the other concept. For example, if:

109

 ALL PEBBLE <SUB A [ROUND] STONE

 <TEXTURE SMOOTH>>

 ALL EGG <SUB A [ROUND] OBJECT <BELONG A HEN>

 <TEXTURE SMOOTH>>

 then PEBBLE and EGG are LIKE-vague. As the number of defining

characteristics increases so the number of LIKE-vague concepts will

probably decrease.

v) VAGUE. This type combines TYPE and LIKE. Two actors are

VAGUEly the same if the are TYPE-vague the same or if they are LIKE-

vague the same or if their category concepts are LIKE-vague the same.

2.3B6. MOVE

ANY LIFE MOVE ANY BODYPART A PLACE1 A PLACE2.

This act is used to express verbs involving bodily movement, such as

"punch", "walk", "eat" and "breathe". The body part specified as object must be

part of the subject carrying out the action, and the places must be situated

inside or close to the body of the subject. The act is used to express the verbs

concerned with ingestion ("drink", "eat", "breathe") as well as expellation

("breathe"). For example, breathing consists of inhaling ("transferring air from

near the body to lungs by moving chest out") and exhaling ("transferring air

from lungs to near body by moving chest in"). The movement of this act

involves two places, both outside but near the body, for example, eating may

involve moving the hand from the food source to the mouth, walking involves

moving each leg alternately forward.

John punched Bill.

JOHN [<DEGREE VIOLENT>] MOVE FIST A PLACE1

 A PLACE2 <LOC BILL>.

John is eating a sandwich.

JOHN TRANSFER A SANDWICH A PLACE1 STOMACH

 THROUGH JOHN MOVE HAND A PLACE2 THE SANDWICH

 <LOC THE PLACE1>

 AND JOHN MOVE SOME FINGER A PLACE3

 <FRONT THE SANDWICH> A PLACE4

 <BACK THE SANDWICH>

110

 AND JOHN MOVE HAND THE PLACE1 MOUTH.

The last example illustrates how the THROUGH connector can be used

to fill in the details of an action to virtually any level of detail. In both examples

the object and any body part mentioned are assumed to belong to the subject

unless otherwise stated.

Evaluated as a command it is this act that would be responsible for

controlling any robotic activity. For example, in a Winograd type of block

moving environment the MOVE act would be used actually to control the crane.

The THROUGH connector would be used in such circumstances to describe the

required activity down to the level of individual movements that the devices

attached to the system were capable of being commanded to do. It is assumed

that with any set of devices there would be a certain group of primitive

commands for controlling those devices and that higher level commands could

be constructed using the THROUGH connector.

2.3B7. PASS

ANY THINKER PASS ANY OBJECT ANY OWNER1 ANY OWNER2.

This is one of the transfer acts (MOVE, TRANSFER, TRANSMIT and

PASS). In this case it is the possession of an object that is transferred. This

transfer is performed by the subject, who may be the donor (OWNER1) the

recipient (OWNER2) or neither. The act does not imply ownership in a legal

sense but possession in a social sense. It is the possession expressed by the

relation POSS.

The act will usually be enabled by OWNER1 possessing (POSS) the

object OBJECT and it will usually produce OWNER2 possessing the OBJECT and

OWNER1 not possessing it. Alternatively, the act may be enabled by OWNER1

having (the HAS relation is usually defined in the general knowledge) the

OBJECT and produce OWNER2 having it without OWNER1 losing it. The second

111

type of transfer is that associated with diseases and knowledge and

it is also the type of "passing-on" transfer that occurs with the act TRANSMIT.

The act occurs in the deep structure of verbs associated with transfer

such as "give", "take", "sell", and "buy". These will often be accompanied by a

corresponding change in location but this is not necessary. Some examples are:

John gave his book to Bill.

JOHN PASS BOOK SELF BILL.

John took a book from Bill.

JOHN PASS BOOK BILL SELF.

2.3B8. PERCEIVE

ANY LIFE PERCEIVE PATTERN.

This act is the instrument (specified using the THROUGH connector) of

all acts concerned with sensing the external world, namely those TRANSMIT

acts in which the source is one of the sense organs. I t can also be used to

specify that the subject "sensed" the object without needing to specify the

particular sense involved. For example:

Bill saw John kissing Mary.

BILL TRANSMIT <JOHN TRANSFER MOUTH A PLACE

 MOUTH<BELONG MARY>>

 EYE SELF

 THROUGH BILL PERCEIVE [JOHN MARY].

John smelt the rose.

JOHN TRANSMIT [SMELL] ROSE NOSE SELF

 THROUGH JOHN PERCEIVE ROSE.

2.3B9. TRANSFER

ANY FORCE TRANSFER ANY OBJECT ANY PLACE1 ANY PLACE2

This act refers to the physical transfer of an object from one location to

another by the application of some force (animate or inanimate). The act would

typically be enabled by the object being located at the source location (PLACE1)

and would produce the object being located at the destination location (PLACE2)

and not at the source location. However, more complex conditions and results

could be specified, for example, that the force is able to apply itself to the

112

source place and is sufficient to reach the destination location, that

the object is transferable, and that the force has access to any instrument

required to carry out the action. Some simple uses are:

John went to school.

JOHN TRANSFER SELF A PLACE SCHOOL.

John and Mary walked to the park.

(JOHN MARY] TRANSFER SELF A PLACE PARK

 THROUGH (JOHN MARY] [REPEAT] MOVE 2 LEG

 A PLACE1 A PLACE2.

In the current system the TRANSFER act evaluated as a command

automatically searches the current view for the object specified and if found

updates the view to describe the object's new position.

2. 3B10 TRANSMIT

ANY THINKER TRANSMIT ANY THOUGHT ANY MIND1 ANY MIND2.

This mental transfer act is used to transfer between locations in one

mind ((i), (ii) and (iii) below) or between minds ((iv), (v) and (vi) below). The

following list gives all the possible source and destination locations for this act:

i) HERE. This entity concept can be used in the source position to

transmit from the object position, or in the destination position to

transmit to the object. This can be used in PIDGIN in a way that is

ana1agous to assignment in a conventional programming language, for

example:

 SELF TRANSMIT A THOUGHT USER HERE.

would read (and trans1ate if in English) a thought from the user and

make it the reference of the concept THOUGHT.

ii) MEMORY. Can be used to recall from memory (source position) or

to store in the memory (destination position).

iii) VIEW. This concept allows the view to be accessed or altered.

113

iv) SELF. In the subject position of a conception this

concept refers to the subject of that conception. If a thought is

transferred to the SELF of the PIDGIN system then this is equivalent to

transferring to HERE and to MEMORY; similarly if SELF refers to some

other THINKER it is assumed to be transferred to the MEMORY of that

THINKER.

v) USER. This is a group concept that includes all minds that PIDGIN

can transmit to. Therefore, before PIDGIN can communicate to a

person the name of that person must be defined as one for which USER

may be substituted, for example:

 JOHN <SUB A USER>.

vi) THINKER. A group concept that includes all minds that can

transmit and be transmitted to, so:

 ALL USER <SUB A THINKER>.

 Verbs that include TRANSMIT in their deep structure are, for

example, "remember", "learn", "speak", "teach" and "listen".

 John recalled the time they met.

 JOHN TRANSMIT<SELF<NEAR PERSON>>MEMORY SELF.

 John told Bill to go.

 JOHN TRANSMIT<BILL TRANSFER SELF A PLACE1 A PLACE2>

 SELF BILL.

 When a thinker is specified as destination it is assumed that the

thought object is transmitted to that part of the mind of the thinker

concerned with comprehension, in the case of the PIDGIN system the

evaluator.

114

2.3C Actors

Actors are the PIDGIN equivalent of what in Schank's notation would be

fully qualified picture producers or PPs. An actor is a qualified entity-concept or

a quantified and qualified group-concept. The distinction between these two

types of actor corresponds to the distinction between singular and general

terms as described in Section 4.2.1. The memory of PIDGIN is thus organised

at the lowest level into actors and these are brought together by the acts to

form conceptions which may be further organised into thoughts by the

connectors, thus:

An actor corresponds to a noun group in systemic grammar that is it is

a complete description of an object set, for example:

John some apples

some apples

all the other ten very worn school books in the library

However, an actor is a conceptual unit in PIDGIN and a noun group is a

syntax unit in English, therefore there are a number of differences. For

example, definite descriptions are replaced by the entity-concept that is being

described, and rank-shifted qualifying clauses are usually replaced by a

separate conjoined conception.

115

2.3C1 Entity and Group Actors

An actor is essentially a qualified concept. There are two types of

concept, entity and group concepts. An entity concept names or purports to

name a single object and may not be substituted for any other concept (except

an equivalent entity concept). A group concept is true of each, severally, of any

number of objects. Corresponding to these two types of concept there are two

types of actor, an entity actor which is an entity concept qualified by other

concepts, and a group actor which is a group concept quantified (to define the

number of objects being mentioned) and qualified by other concepts. The

distinction between entity and group concepts runs through the complete

system.

A subscripted group concept is treated as the same concept as its

unsubscripted form except that it may have a different reference, but each

subscripted entity concept is treated as a different (entity) concept, with a fixed

reference.

A new concept is defined by specifying the concept that can be

substituted for it, using the SUB relation. This concept must be a group concept

which has itself been previously defined in this way. The complete set of

definitions serves to define the relation of each concept to another and the

complete set forms a tree, at the root of which are the group concepts which

'are built into the initial system, for example, the group concept THING. The

built-in concepts have special features associated with them, for example, the

acts, which are entity concepts, have already been described. The relations are

group concepts with certain properties (described later) that they pass on to

any concept for which they may be substituted. The primitive knowledge will

usually contain a series of definitions that set up a range of new concepts that

are then used to define the possible subject, object, source and destination

116

actors for each of the acts as shown in the last division. These

concepts form the basis of the world view set up later by the general and

specialist knowledge.

The following parts deal with the possible quantifiers and qualifiers of

these concepts in order to try to show the range and limitations of the actor

structure in PIDGIN.

The following definitions show part of a typical primitive know ledge

base that would organise the nominal concepts in a manner consistent with the

model conceptions given in the last division:

ALL FORCE <SUB A THING>.

ALL OWNER <SUB A THING>.

ALL PLACE <SUB A THING>.

ALL OBJECT <SUB A PLACE>.

ALL BEING <SUB A THING>.

ALL THINKER <SUB A BEING>.

ALL LIFE <SUB A BEING>.

ALL BODYPART <SUB AN OBJECT>.

ALL BODYPART <PART A LIFE>.

ALL MIND <SUB A PLACE>.

ALL MIND <PART A THINKER>.

ALL MEMORY <SUB A MIND>.

ALL USER <SUB A MIND>.

ALL VIEW <SUB A MIND>.

HERE <SUB A MIND>.

SELF <SUB A USER>.

2.3C2. Quantifiers

This structure occurs only within a group actor. It defines the number

of the nominal concept as being equal to, more than, less than or

approximately equal to an arithmetic expression. The simplest form of an

arithmetic expression is a number, thus:

three books 3 BOOK

more than four books <MORE 4> BOOK

about one hundred books <ABOUT 100> BOOK

More complex expressions involve the addition, subtraction,

multiplication and division of numbers, numeric "variables" and actors:

117

Mary is twice John's age.

MARY <AGE <MULT =N YEAR <OLD JOHN> 2> YEAR>.

That is, the number of years of Mary's age is equal to two multiplied by

the number of years of John's age (N), so if:

20 YEAR <OLD JOHN>.

Then the system can calculate that:

40 YEAR <OLD MARY>.

The other quantifier, ALL, plays a special role, it is not used to signify a

particular numeric quantity but is used refer to the group as a whole, for

example, in setting up definitions and attributes of the complete group. In

order to discuss the adequacy of the quantifier construction in PIDGIN a few

English quantifiers will be examined to see if, and how, they might be

translated into PIDGIN. The following list gives a few English quantifiers:

very

nearly, almost

all, both, at least, half, third, quarter

a, no, the, some, any, each, another, neither, every, several

other, same, few, certain

one, two, three ... first, second, third

The quantifiers concerned with approximation ("very nearly", "nearly",

"almost", "approximately", "aboutl1 and so on) are handled by the quantifier

comparator ABOUT. This comparator assumes an (arbitrary) variation of 25%

either side of its argument. If necessary PIDGIN could be altered to allow an

explicit variation to be stated to cope with the difference between say "very

nearly" and "nearly". However, it is very difficult to quantify such variations as

they seem to depend on the magnitude of the quantity, the concept being

quantified and more particularly with the use to which the assertion is being put

(for example, a casual remark opposed to a scientific report). These difficulties

though are difficulties of translation, of deciding on the implied variation, not

limitations of the method of representation. If PIDGIN were extended to allow a

118

variation to be explicitly stated then this could probably best be

done by removing the ABOUT comparator and allowing the EQUAL, MORE and

LESS comparators to take another parameter that specified the variation as a

percentage. The present ABOUT comparator would then correspond to the

EQUAL comparator with an explicit variation of 25. A single number as

quantifier can be used to cope with the translation of "a", "an" and cardinal

numbers:

a man 1 MAN

two men 2 MAN

half an apple 0.5 APPLE

In order to express averages, superlatives and fractions of groups the

special relation modifiers MAX, MIN, and MEAN are introduced:

The oldest person died.

A PERSON <AGE <EQUAL =N YEAR <<OLD MAX>

 ALL PERSON>> YEAR>

 BECOME [DEAD] SELF.

John is average height.

JOHN <HEIGHT <EQUAL =N METRE <<TALL MEAN>

 ALL PERSON>> METRE>.

The average salary of men is twice that of woman.

<DIV =N POUND <<SALARY MEAN> ALL MAN> 2>

 POUND

 < <SALARY MEAN> ALL WOMAN>.

Over one third of the people in the world are hungry.

<MORE <DIV ALL 3>> [HUNGRY] PERSON.

It will be seen later that only certain relations may be modified by MAX,

MIN and MEAN and these relations are those in which it is the quantity of the

first actor that is of concern. Thus .the first example above may be read - there

is a person such that his age is the maximum for all people and that person has

become dead. In the second example the difference between this and:

=N METRE <<TALL MEAN> JOHN>.

should be recognised, the second suggests that John's height changes

and it is currently average for John.

119

The third example states that the number of pounds of a

woman's salary is that of a man's salary divided by two. The final example

shows the other use of ALL within an expression to stand for the numeric

quantity which is the total number of individuals making up the set described

by the group actor.

Other English quantifiers such as "the", "other", and "same" are not

really quantifiers, in the PIDGIN sense, but directives to the analyser to find

and substitute entity concepts for group concepts wherever possible. In the

deep structure noun groups qualified by these determiners will usually be

replaced at the analysis stage by the entity concept that they describe.

Most of the other quantifiers reduce to the usual logical universal and

existential quantifiers. Universal quantification is expressed in PIDGIN using

ALL, and existential quantification by referring to a single member of a group

concept. Some examples are given below:

Croydon is near a city.

(x) (x is a city ^ Croydon is near x).

CROYDON <NEAR A CITY>.

There are no five-legged cows.

-(x) (x is five-legged ^ x is a cow).

5 LEG <PART A COW> [NOT].

Something pleases Bill.

(x) (x pleases Bill).

A PERSON DO AN ACTION CAUSE BILL BECOME

 [HAPPY] SELF.

2.3C3. Attributes

An attribute is a concept that corresponds to what Schank calls a

picture-aider (PA) and what in English is a general term that can be used

adjectivally. For example, "red book" is true of all those things which it can be

said that they are red and they are books. A new attribute is defined in the

120

same way as a new nominal but by making it a concept for which

the group concept ATTRIBUTE can be substituted:

ALL COLOUR <SUB AN ATTRIBUTE>

ALL RED <SUB A COLOUR>

ALL PINK <SUB A RED>.

However, it is difficult to build the attributes into a hierarchy that

clearly defines their inter-relationships, as can be done for nominals. This is

especially true for those attributes concerned with the feelings of living things

and those concerned with the value that living things place upon objects. For

example, Schank uses the attributes "comfortable" and "upset" (Schankl973b)

without bringing in any mechanism for relating them together when it is clear

that in order to use these attributes correctly the system must be able to do

this.

Psychologists have tried to determine these connections between

attributes experimentally. C E Osgood (Carroll 1969) took 50 dimensions or

axes named by different pairs of adjectives and then got college students to

rate a large number of nouns along these axes. By factor analysis it was found

that the 50 dimensions could be reduced to three, which could be roughly

described as an evaluation, a potency and an activity dimension. There are a

number of dimensions that do not readily fit this trichotomy, for example

serious-humorous, but the experiments have been repeated many times in

different ways with the same general conclusion.

In PIDGIN all nominals can be rated along three dimensions which

describe how "good", how "'strong", and how "active" that concept is. These

three dimensions can be roughly related to the basic psycho logical processes

of a concepts average reward value, the effort required to produce or resist it

and the rapidity of movement associated with it. Thus it is assumed in PIDGIN

that all nominals can be placed at some point within a three-dimensional

121

"semantic space" in which closeness implies closeness of some

aspect of the concepts meaning. For example, some actual experimental

averages bring the following concepts into the groups shown:

(i) abortion, divorce, bad, feverish, crooked

(ii) calm, chair, table, statue

(iii) happy, patriot, leadership, brother, progress

(iv) art, nice, food, sky

Of course, any such table of groupings represent a single individual's

view of the world. The point at issue here is whether it is possible to find some

common method for finding such a table. The obvious way is to put together

those nominal concepts that are associated with the same attributes. However,

if there is no limit to the number of attributes and no connection between them

then this method is of little use. In PIDGIN it is assumed that all nomina1s can

be placed somewhere on a three-dimensional graph and that each area of that

graph may be associated with some attribute in the sense that the attribute

names that area of the graph. This has been incorporated into PIDGIN using

two relations, FEEL and VALUE, and three dimensions GOOD, STRONG and

ACTIVE rated (arbitrarily) between -100 and +100. So for examp1e:

ALL HAPPY <SUB AN ATTRIBUTE <FEEL [100 GOOD

 70 STRONG

 80 ACTIVE]>>.

ALL GLOOM <SUB AN ATTRIBUTE <FEEL [-80 GOOD

 -50 STRONG

 -50 ACTIVE]>>.

ALL COMFORT <SUB AN ATTRIBUTE <FEEL[50 GOOD

 20 STRONG

 -20 ACTIVE]>>.

Any attribute described as a feeling is concerned with the subjects own

view of themselves (a subjective internal view), any attribute described as a

122

value is concerned with the subjects view of some object in the external world

(a subjective external view) and all other attributes are concerned with

describing the external world (an objective external view). This can be

diagrammed as:

2.3C4. Specifiers

A specifier is a relation, or modified relation, followed by one or more

actors and used in an actor structure to modify the nominal.

A specifier corresponds to a relative term in English, it is a concept that

relates or links together an actor with one or more other actors. The twenty

relations (ten spatial relations and ten others) built into PIDGIN are described

later in this part.

New relations are introduced by using SUB to define their category. A

new relation may be substituted for by one or more of the group-concept

relation-describers RELATION, MEASURE, REFLEX, SYM, TRAN, LSUB, and RSUB

with the following effect:

123

i) RELATION. If a concept, R, is a relation it can be used

to connect two actors as A <R B> but it has none of the properties

described below unless it is explicitly stated as having them by defining

the relation as capable of being substituted for by the appropriate

describer.

ii) MEASURE. If a concept, R, is a measure then it is a relation and

can be modified by the relmods MAX, MIN, and ME~. For example:

ALL OLD <SUB A MEASURE>.

ALL SALARY <SUB A MEASURE>.

iii) REFLEX. If a concept, R, is reflexive it is a relation that is always

true if used to link an actor to itself A<R A>. For example, everything is

equivalent to and located at itself.

iv) SYM. If a concept, R, is symmetrical then if A<R B> then this

implies B<R A>. Only a relation between two actors can be

symmetrical, an example is the relation NEAR.

v) TRANS. If a concept, R, is transitive it is a relation such that if

A<R B> and B<R c> then this implies A<R c>.

vi) LSUB. If a concept, R, is left-substitutable then it is a relation such

that if A<R B> then A can be substituted for B in any conception

containing B, without altering the truth value of the conception. Further

A is said to be the "category" of B.

vii) RSUB. If a concept, R, is right-substitutable then it is a relation

such that if A<R B> then B can be substituted for A in any conception

containing A without altering the truth value of that conception, and B

is said to be the "category" of A. The built-in SUB relation is of type

RSUB.

124

The following describes each of the built-in relations and

specifies its type.

a. SUB (TRANS, RSUB)

This is the basic relation for defining new entity and group concepts,

including nominals, attributes and relations. A definition takes the form:

entity <SUB A group>

or ALL group1 <SUB A group2>.

where this declares "entity" to be of category "group", and "group1" to

be of category "group2". Because SUB is RSUB this implies that "group" may be

substituted for "entity" and "group2" for "group1". Further, because SUB is

TRANS if "group1" were the same as "group" then "group2" could be substituted

for "entity".

b. EQUIV (SYM, TRANS, LSUB, RSUB)

This relation is used to specify that two entity concepts or two group

concepts are inter-substitutable in any conception containing them without

altering its truth value.

c. INVERSE (SYM)

This relation is unusual in that it is only used to relate two concepts

that are themselves relations. It specifies that they are inverse relations

(brother-sister, part-contain, father-child). For example, if:

MARY <SISTER JOHN>.

and BROTHER <INVERSE SISTER>.

then JOHN <BROTHER MARY>.

125

If R1 <INVERSE R2> then if R2 is REFLEX then so is R1 if R2

is SYM then so is R1 if R2 is TRANS so is R1 if R2 is LSUB then R1 is RSUB and if

R2 is RSUB then R1 is LSUB. However if R2 is MEASURE R1 is not.

d. OPPOSITE (SYM)

This relation, like INVERSE, is used to relate two relations. It is defined

as, if R1 <OPPOSITE R2> then R1 is the same type as R2 and if A<R1 B> is true

then A<R2 B> will be false and vice-versa. For example:

FAR <OPPOSITE NEAR>.

NOTLEFT <OPPOSITE LEFT>.

e. PART (REFLEX, TRANS)

This is used to express the English notion of "part of", thus:

A PISTON <PART AN ENGINE>.

AN ENGINE<PART A CAR>.

Therefore, because PART is TRANS:

A PISTON<PART A CAR>.

f. POSS (TRANS)

Used to express the notion of "possession" (without any legal

associations), thus:

JOHN <POSS A DOG>.

g. FEEL, VALUE

These are used to relate concepts to the three-dimensional semantic

space discussed in Part 3. FEEL is used to relate a THINKER to a point in the

space or to define a concept as being that point. VALUE is used to assign an

object some point in the space in order to express how some THINKER values

that object.

126

Both relations take a single actor that may be one, or a

band of two or three actors, either GOOD, STRONG, or ACTIVE, with a

quantifier between -100 and +100. If any dimension is not defined (less than

three actors) it is assumed to be zero but is free to vary, thus:

ALL BEAUTY <SUB A RELATION <VALUE [50 STRONG -80

ACTIVE>>.

A VASE <BEAUTY 50 GOOD>.

h. PRIORITY, CLASS (MEASURE)

PRIORITY is used to assign a priority (between 0 and 100) to, or to

discover the priority of, a user name (see Division 2.2.2C). This relation may

only be used by a user with a priority over 90 or more. It is used when setting

up the system in order to create a number of user names (or "passwords") so

that the system can associate every user with a priority and thus assign an

"importance" to anything that user tells the sys tem.

CLASS is used to define the type of user - SYSTEM, GENERAL or USER

(see Division 2.2.2C).

i. LOC (REFLEX, SYM, TRANS)

This relation corresponds to the LOC relation of Schank. It is used to

express the location of one actor with respect to another. If a spatial relation

(LOC, NEAR, FAR, ABOVE, BELOW, BACK, FRONT, LEFT, RIGHT, BETWEEN,

DIST) relates two actors that match two objects in a current view then the view

is used to answer questions about the objects. The spatial location of an object

in a view cannot be altered by simply stating a new location but it is altered by

using the TRANSFER act.

127

j. NEAR (SYM)

NEAR means that the two actors are either at the same location or they

are next to each other. Note that, unlike LOC, it is not transitive.

k. ABOVE, BELOW, BACK, FRONT ,LEFT, RIGHT (TRANS)

These can be used to express the three-dimensional relation ships

between two objects (see IDENTIFY Part 2.3B5). The relations express the

strict meanings of the words and so are not opposites of each other, for

example:

A

 B

 C D

 E

 A <LEFT B>. B <ABOVE C>. E <BELOW D>. are true.

but C <RIGHT B>. D <ABOVE C>. are false.

If the opposite relations (NOTABOVE, NOTBELOW ...) were defined in

the general knowledge, then:

C <NOTLEFT B>. D <NOTBELOW C>. would be true.

l. BETWEEN

This is used to express the idea that one actor is spatially between two

others. The notion of numerically between is already built into the way

quantifiers are handled (using a conjunction of MORE and LESS). The relation

takes one argument which must be an unordered band of two actors, the

symmetry of these is thus automatically built in:

128

LONDON <BETWEEN [PARIS NEWYORK]>.

will match

LONDON <BETWEEN [NEWYORK PARIS]>.

m. DIST (MEASURE)

This MEASURE relation is used to specify the distance between two

objects. The distance can be specified in pattern units by using the concept

UNIT, for example:

5 UNIT <DIST [WPAWN BKING]>.

n. The Relation Modifiers

As well as the above twenty relations there are three relations modifiers

(MAX, MIN, MEAN) built-in. These can be used to modify any relation of type

MEASURE. One use for this facility is to be able to express the deep structure of

comparatives and superlatives, for example:

oldest <<OLD MAX> =ALL PERSON>

older than x <AGE <MORE =N YEAR <OLD x>> YEAR>

old <AGE <MORE =N YEAR <<OLD MEAN> ALL

 PERSON>> YEAR>

same age as x <AGE =N YEAR <OLD x>>

young <AGE <LESS =N YEAR <<OLD MEAN> ALL

 PERSON>> YEAR>

younger than x <AGE <LESS =N YEAR <OLD x>> YEAR>

youngest <<OLD MIN> =ALL PERSON>

2.3D. Modifiers

A complete conception may be modified in anyone of the thirteen

different ways discussed below.

a. Index

This is an integer that uniquely identifies the conception. The index

number modifier cannot be specified by the user for a PIDGIN assertion; it is

129

automatically assigned by the system as one greater than any

previously used index.

b. Author

This is the concept associated with the user that created the

conception. This concept can be thought of as the user's name, or password,

that he must specify before he is allowed to use the system. Every user name is

associated with a priority that is used to assign a relative importance to all the

assertions made by the user with that name. Any conception that is created by

PIDGIN is assigned the author concept SELF.

c. Priority

This is a number between 0 and one hundred that assigns a relative

importance to the conception it modifiers. That is if one conception contradicts

another the conception with the highest priority is considered correct. The user

cannot specify any of these first three modifiers, index, author or priority,

directly in a conception. The index is assigned automatically by the system, the

author concept is specified once when the user first starts to use the system

and the priority is already associated with the author.

d. Truth

Any conception may be modified as to its truth value, either TRUE or

NOT. NOT is used to indicate that the conception it modifies is false, TRUE that

is true.

130

e. Modal

A conception may be modified as POSSIBLE, DEFN or neither. If a

conception is POSSIBLE it is assigned a priority of twenty and will not be used

to make deductions. A conception marked as DEFN is assigned a priority of 10

greater than the priority associated with the author concept, this allows a user

to create conceptions that can be used to check the consistency of later (non-

DEFN) conceptions asserted by the same user.

f. Period

This is used to specify any transitional aspect of the conception it

modifies, that is, to specify that a particular phase or change is being

mentioned. The possible modifiers can best be described by a diagram:

The other modifier, REPEAT, is used to indicate that the action is an

event that is repeated (for example, moving the legs during walking) and this

repetition is an essential aspect of the complete conception.

g. Manner

i) Intent

131

An action may be modified by INTEND or ACCIDENT to

indicate whether the subject of the action intended the specified action

or the action took place and involved the subject.

ii) Condition

If the conception is modified by CAN the subject has not or will not

necessarily perform the action but could perform it in the appropriate

circumstances if required. If an action is modified by CAN then any

action that matches that conception can be performed without any

enabling conditions being required.

iii) Disposition DISPOSED is used to mark those conceptions that

express the idea of the subject being inclined to carry out the action

from time to time, under the appropriate circumstances (for example,

"John hunts lions", "Tabby eats mice").

h. Degree

This specifier modifier allows adverbs to be incorporated in the deep

structure, for example:

<DEGREE SLOW>

<DEGREE IMPRESSIVE>

However, the meaning of these adverbs is not fully incorporated into

the overall deep structure of the conception they modify; the DEGREE modifier

merely provides a "slot" into which the concepts can be placed. This is an area

in which PIDGIN could be extended to more fully incorporate the modification

that an adverb has on its containing sentence.

132

i. Location

This is the same specifier that is used to qualify actors. If an action is

associated with a particular location then it is incorporated in the location

modifier. Any action that has a time always also involves some location but it

does not need to be specified in the modifiers. Conversely any action with a

location is associated with a time though once again this does not need to be

specified even though the location is included. This modifier corresponds to

what is usually called an "adverbial clause of place" at the English level. The

location specified is the location of the subject when the act of the action is

performed.

j. Time

Time is specified as an absolute date (relative to 0 A.D.) and time.

Many relative times such as "now", "yesterday" and "next week" can be made

absolute if the time of the utterance is known. However, there are relative

times such as "John's birthday", and "Christmas" which may not be capable of

being made absolute because the information they contain is lost if they are

replaced by anyone of the absolute dates to which they refer. This is another

area where PIDGIN could be usefully extended in the way it handles adverbial

modification. The current way that such relative times are handled is to specify

the time as the actor that describes the relative time. However, this does not fit

into the way in which absolute times are handled.

Absolute time is specified as a number of years, months, days, hours,

minutes and seconds, though they are not all required if the time is not known

precisely, for example:

<TIME [22 DAY 8 MONTH 1947 YEAR]>

<TIME 1975 YEAR>

133

NOW is taken as the current date and time as known by the

system. PAST is any time before (LESS) NOW and FUTURE any time after

(MORE) NOW. The problem of how far in the PAST or FUTURE is resolved by

always specifying the time NOW to the nearest second although often the past

or future tense is used to signify before or after some more approximate period

such as before or after today, or this year.

k. Interval

This modifier is only used if EVENT is also used. It gives the length of

time of the complete EVENT (from START to STOP) in years, months, days,

hours, minutes and seconds or some more approximate figure, such as:

<INTERVAL [2 YEAR 6 MONTH]>

That completes all the allowed modifiers for the conception. Thoughts

may also be modified (except for WHILE) by the same modifiers, in which case

the modifier applies to the complete thought.

2.3 E. Combining Concepts

Now that the concepts have been described it is necessary to consider

how they are put together to form statements. The syntax of Section 2.1.1

does not rule out, for example, combinations such as [SAD] TREE or

A BEE TRANSMIT A THOUGHT A FLOWER A FLOWER2.

These constructions are ruled out by the knowledge contained in the

memory plus the rules for consistency. For example, the primitive knowledge

might contain the conception:

ANY THINKER TRANSMIT ANY THOUGHT ANY MINDI ANY MIND2.

134

The system will only add a new conception to the memory if

either it has a priority of one hundred or the memory already contains a

conception that matches it. This rule implies that the priority one hundred

conceptions define the limits of all possible future combinations. Putting this

another way it means that the system can only learn new particular examples

of what it already knows. For example, the above conception rules out : A BEE

TRANSMIT A THOUGHT A FLOWER A FLOWERI. unless BEE is defined as

THINKER and FLOWER as MIND. This forces the user to define the categories of

the concepts used before they can be combined into conceptions. Any concept

can be defined initially as the category pf any other because the primitive

knowledge will usually contain the conception:

ANY THING BE.

As the system is given more knowledge so the range of possible

combinations is restricted by those of higher priority. For example, the high

priority general knowledge will restrict the specialist knowledge and this will still

further restrict the knowledge that the user may give the system. In this way

meaningless combinations of words at the sentential level cannot get through

to the deep structure because the analyser will not be able to create the

corresponding statement. Further, the analyser can use this mechanism to help

it choose between alternative deep structures when the sentence is ambiguous.

Schank considers the problem posed by sentences such as:

John eats a light bulb.

With such sentences the analyser cannot create a deep structure

because the dictionary entry for "eat" insists that only "food" can: be eaten and

"light bulb" is not a food. Light bulb could be added to the list of concepts of

type food but this would have undesirable consequences, for example, all

questions concerning food would imply light bulb as a possibility and the

135

unusualness of the event would be lost. The solution is to add the

complete conception to the dictionary as a new possible translation of eat. . The

dictionary would then contain the equivalent of :

Any person eat any food

or John eats light bulbs

When a new concept is defined it initially inherits all the possible

combinations of its category concept. However, a new concept is usually

distinguished because it differs from its category concept in some quality

dimension. For example, "mare" is a subset of "horse" and it differs from

"horse" in the "sex" dimension. Whereas, "horse" may have any sex the new

category "mare" is, by definition, "female". This knowledge could be contained

in the memory as:

ANY [SEX] ANIMAL.

ALL HORSE <SUB AN ANIMAL>.

ALL MARE <SUB A [FEMALE] HORSE>.

Here HORSE inherits from ANIMAL the possibility of being qualified by

SEX (MALE or FEMALE) but when MARE is defined this possibility is excluded by

explicitly stating its sex as FEMALE. To incorporate conceptual knowledge

concerned not with a concepts defining qualities but with its typical properties

the quantifier MOST can be used:

ALL BAIL <SUB A [ROUND] OBJECT>.

MOST [SMOOTH] BALL.

that is, the concept BAIL is by definition round and is usually smooth.

The fact that they are usually smooth does not prevent the system creating the

structure [ROUGH] BALL but it may help the analyser to disambiguate a

sentence in which the texture is not mentioned but in which a knowledge of the

most likely texture would distinguish between possible translations.

Finally, possible qualities can be specified:

136

MOST [WHITE] SNOW. SOME [YELLOW] SNOW.

although they cannot be used during analysis.

Entity concepts can only be combined with qualities which can be

combined with their category concept.

2.4 The PIDGIN Statement

2.4.1 Assertions, Questions and Commands

PIDGIN statements can be divided into three types, assertions,

questions and commands. These three types are distinguished by certain

aspects of their structure and by the preceding dialogue. Assertions usually

convey information, questions elicit information and commands instruct the

system to carry out some action. However, the practical handling of these three

types is not quite this straight-forward; assertions may convey information

already known by the system or contradict what the system already knows,

questions may require a simple yes/no answer, require complex deductions to

be performed or even convey information and commands may not be able to be

obeyed.

Assertions are indicated in Input PIDGIN by being terminated by a full-

stop (see Section 2.1.2). The terminating full-stop sets a global indicator to

signify that the deep structure currently being evaluated is an assertion. Both

assertions and questions are treated in a similar way. They are matched

against the memory in order to try and find a matching statement. In the case

of an assertion if a matching statement is found this means that the system

already knows the information that the assertion contains, in the case of the

question this means that an answer has been found. If an assertion matches a

statement already in the memory then that statement must either be identical

to the assertion, more explicit than the assertion or a contradiction of the

137

assertion. When checking for consistency of the complete assertion

each actor in the assertion is separately checked against the world model. For

example, the assertion:

JOHN PASS A [WHITE] RAVEN SELF MARY.

is contradicted by the state:

ALL [BLACK] RAVEN BE.

in the world model.

At the PIDGIN-level when an assertion is evaluated it will either

succeed or fail. If the user is working at the English level then the English-level

driver program will translate this into a suitable explanatory English reply. At

the PIDGIN-level the action taken is determined by the ABC PIDGIN-driver

program, this will, typically, store the assertion in the memory if it succeeds

and output it back to the user if it fails. The following table shows the possible

typical responses at the PIDGIN level : Assertion input:

i) No matching statement in memory

 assertion stored in memory.

ii) Matching statement identical

 output assertion.

iii) Matching statement more explicit

 output statement.

iv) Matching statement contradictory and same or lower priority

 assertion stored in memory.

138

v) Matching statement contradictory and higher priority

 output statement.

Checking for consistency is a very important part of the way PIDGIN

works. Rather than accept the assertions of the user, which can lead to

inconsistencies arising, each one is checked with the current memory. Only if

the assertion is consistent with the memory is it stored. This greatly aids the

user because he is kept in contact with the contents and implications of the

growing system. Of course the user must be allowed to store an assertion in

the memory even if it is contradictory because he may wish to correct an earlier

mistake (this can be done by using the DEFN modifier), and inconsistencies can

arise, but this is preferable to having no checks.

Questions are treated in a similar way to assertions. In Input PIDGIN a

question is signified by terminating the statement with a question-mark (see

Section 2.1.2). A question is typically a general assertion that retrieves a more

explicit statement from memory, however, in the case of the "yes-no" question

the question is as explicit as an assertion. The only difference in the way that

the system handles the two is that if no matching statement is found the

assertion is stored in the memory but the question is not. So the question

response table is the same as the above assertion table except for the first "no-

match" case which, for a question, does not result in it being stored in the

memory but some message, such as [I DONT KNOW.], being output instead.

Questions may be about the working of the system itself. For example,

"how" and "why" questions are concerned with planning and scheming (see

Section 2.4.4) respectively. The system automatically adds assertions to the

memory when it carries out a plan and a plan will generate new states.

Therefore, questions concerning actions that have been obeyed can be

139

answered from the memory ("how" question from THROUGH sub-

actions and "why" questions from the states produced). Questions concerning

future actions can be answered from the current scheme and plan.

A command is a conception containing one of the action-acts with the

concept SELF as subject and a time modifier of NOW. Unlike assertions and

questions it does not cause the memory to be searched but it causes the ABL

expression associated with the action-act to be evaluated. In Input PIDGIN a

command is terminated by either a full stop or an exclamation-mark. The

primary indicator of a command is a conception with SELF as subject. If the

PIDGIN interpreter is given such a conception and the time modifier is NOW

then it immediately evaluates the ABL expression associated with the act. This

expression first checks that the command is enabled in the current memory. A

command is enabled if either a matching conception has the modifier CAN or

every ENABLE thought with a matching action has states that can be found in

the current world model. If the command is enabled then the appropriate action

is performed (see Division 2.3B), if not the command fails. After performing the

appropriate action a check is made for any PRODUCE thought with a matching

action part. All such thoughts that are found in the memory have their states

added to the current world model. A conception with the form of a command

but with a time modifier indicating the past is treated as an assertion (about

some past command).

A conception with the form of a command but with a time modifier

indicating the future is called a suspended command and it is stored in a special

part of SEM, suspended evaluation memory (see Segment 2.2.3Blb), with a

reviver based on the time it is to be obeyed.

The actual action performed by a command depends on the facilities of

the complete system. For example, at one extreme the system may be

140

connected to a number of peripherals in the real world, cameras

(PERCEIVE and IDENTIFY acts), 'arms' (MOVE and TRANSFER acts) and so on,

and at the other extreme it may be connected to simply a single input/output

terminal. In the later case all the commands must be simulated inside the

computer in such a way that the PIDGIN system is presented with an

environment similar to that which would be presented by the real devices. This

later system is that used by Winograd's question-answering system.

There are many types of sentence not covered by the above division

into assertion, question and command, for example, jokes, greetings,

exclamations, thanks and so on. This means that much of the subtlety of such

sentence will be lost because the translator can only translate it to one of the

three types provided. However, in the problem-solving environment in which

PIDGIN is designed to work the information lost should not be relevant. Another

difficulty is illustrated by the following example, if a headmaster says

"The boy responsible will tell me the reason why he did it."

then this can be taken as a hope by the staff, an assertion by the pupils

and a command by the boy himself. It could also be taken in many other ways,

such as a threat or a question. The way it is understood by each hearer

depends on that hearer's world view, knowledge of the speaker and current

world model. PIDGIN can handle some of the subtlety implied by this large

number of sentences types by the use of more rules. For example, a threat can

be treated as an assertion plus a rule that links such assertions to the

possibility of the subject of the assertion harming the object. Such a rule would

enable PIDGIN to deduce the possibility of harm but to recognise the first

assertion as an example of a threat it would be necessary to define the

meaning of the concept THREAT as any assertion for which there is a matching

rule that implies the subject of the assertion may harm the object.

141

Another way that the PIDGIN system can be used is to run

it in a mode that causes it to try to extend and improve its knowledge by asking

the user questions. This can be done by taking any conception that is not fully

modified and qualified. For example:

John takes a book.

 JOHN PASS A BOOK AN OWNER JOHN.

is the source of the following questions, and many more:

Which book?

Who owned the book?

When did John take it?

How did John take it?

Why did John take it?

Questions can also be generated by forming hypotheses. A hypothesis

is generated by taking a statement, making its concepts vaguer and checking

the result for consistency with the current memory. For example:

John takes objects.

People take books.

People take objects.

The problem with allowing PIDGIN to generate such questions and

hypotheses is to find some way of restricting them to the most likely

possibilities. This requirement goes beyond the current scope of PIDGIN.

2.4.2 Substitution Rules

Matching is the most important basic process in the PIDGIN system as

it determines conception equivalence, which determines what questions can be

answered, what commands obeyed and what problems solved. This section

describes all the rules used in the matching process. These rules are called

substitution rules because they describe all the conditions under which one

statement may be substituted for another.

142

Unlike most matchers, such as those of SNOBOL or

PLANNER, PIDGIN does not match "blindly" but uses the semantic information

available to limit the possible matches. Further, as all matches take place

between two statements the matcher works with items that have limited syntax

and fixed, known semantic relations. This enables an efficient implementation

to be made. For example, the first item in a conception is always one of the 12

acts (nine acts plus BE plus the two general acts). The system can therefore

not only divide the memory according to this first item but each act can be

associated with a different matching algorithm that takes into account the

syntactic and semantic restrictions that the act imposes on the whole

conception. Further, the semantics of actors and attributes suggests that they

may be efficiently related by means of tree structures. Thus, although the

memory is regarded throughout as a linear sequence that is scanned

sequentially it can in fact be implemented as an interconnected network, similar

to memory structures such as that of Quillian. The form of this network is not

described, however, as it is regarded as an implementation detail that should

play no part in the design of the system. The rigid specification of the deep

structure ensures that an efficient implementation is possible but the details of

this are left to the implementor (one possibility is discussed in Appendix I). The

justification that is some times given for describing networks is because of their

obvious analogy to the central nervous system. However, so little is known of

the structure of nerve nets involved with such complex activities as language

and problem solving that little appears to be gained from such conjectures.

PIDGIN can be regarded and described in terms of networks but for the

purpose of presenting it as a programming language it is simpler to think of it

as a sequence of statements.

The matching ability of PIDGIN centres on matching two actors

together. This ability is available directly using the act IDENTIFY (see Part

143

2.3B5) which can be used to match actors or groups of actors with

a group of actors called the view. The matcher is also used implicitly throughout

the system, for example, to answer questions and to check for consistency. The

implicit matching process always takes place between two statements and

consists of three parts, the actor matcher, the modifier matcher, and the

conception matcher which uses the other two.

2.4.2A The Matcher

The matcher takes a single statement and tries to find a matching

statement in the memory using the substitution rules and the relations between

the concepts. The single statement is called the picture and is typically a

question and this is matched with each statement in memory in turn until either

a successful match is found or the memory is exhausted and the match fails. As

each statement in memory is examined it becomes known as the pattern or

candidate, and is typically an assertion.

If a successful match is made then a "fail-point" is set up in the

matcher so that a later failure can return to the same point and continue

searching. If the memory is exhausted and the picture is a conception then the

matcher examines all the IF-rules for one with a matching header (the first

conception of the rule). If there are no IF-rules that match or all matching IF-

rules fail then the complete match fails. If a matching IF-rule is found then a

fail-point is set up and the rest of the IF- rule is evaluated to determine if the

match is successful.

This fail-point mechanism is also incorporated in PLANNER for a similar

purpose. However, it is hoped that the complexity of a single conception

compared with for example Winograd's PLANNER data-base patterns will enable

a more efficient system to be 'set up because of the reduction in failure

144

backtracking. This follows from the fact that simpler patterns will

match more often and so if one complex pattern is replaced by a number of

simpler patterns each of which must be matched against the complete memory

and each of which may involve a large number of backtracks then the complete

process will take longer. For example, in Winograd's system to find "a large red

cube" required the Micro-Planner commands:

(THGOAL (#IS $?Xl #BLOCK))

(#EQDIM $?Xl)

(THGOAL (#COLOR $?Xl #RED))

(THGOAL (#SIZE $?Xl #LARGE))

that is, first find a block, then check it is a cube, if not backtrack to find

another block, then check it is red, if not backtrack to find another block, then

check it is large, if not check for another colour and another block. This

continual backtracking becomes even worse when the equivalent of a complete

conception is considered.

It is interesting to note that R. Schwarcz (1970) and R.F. Simmons

described a similar problem with their Protosynthex III system and suggest a

similar solution. With a large data-base these backtracking memory searches

become increasingly slow because of the combinatorial explosion and Schwarcz

suggests two possible ways of alleviating this:

(i) "partitioning the data base into discourse units".

In effect this means not looking at parts of the data-base because it is

known that they do not contain the answer. This amounts to the system having

some idea of where to look before it starts the search and the problem is how

to order or to divide the data-base so that the questions that occur can make

use of the ordering and division. PIDGIN goes a small step along this path

because its syntax allows the system to partition on the subject nominal and

the act. For example, it can divide the data-base into those conceptions

145

concerned with PERSON PASS, PERSON MOVE, PERSON TRANSFER,

and so on. This is a graph-partitioned data-base which is strongly tree-

partitioned because of the structure of the concept relations. That is, PIDGIN

could be implemented with a meaning structured data-base so, for example, to

find all conceptions concerned with "CHILD MOVE" it need only look first at the

THING-ANIMAL PERSON-CHILD concept structure and then in detail through

just the CHILD-MOVE conceptions. The advantage of this system is that the

nominal concept structuring automatically increases in complexity with data-

base size. The increased length of time required to search a larger data base

should be offset to some extent by the finer partitioning resulting from the

typical corresponding increase in the dividing of concepts. The extent to which

one offsets the other has not been investigated by practical comparisons.

(ii) "use a basic unit larger than the relational triple".

Protosynthex, and to some extent Winograd's use of PLANNER, is based

on a data-base unit consisting of three parts (relation plus two arguments).

Schwarcz suggests that by increasing the size of the unit and thus reducing the

number of sub-goals and the number of answers to each sub-goal the system

would be quicker even though each individual comparison takes longer. He also

states:

"Thus the substitution of the Fillmore case structure for the structure of

event triples would yield substantial benefits for natural language deductive

question-answering systems."

PIDGIN is based on Schank's case structure which is an improvement of

Fillmore's (see Schank 1969b) because it is concerned with the conceptual deep

structure not the surface syntax and also because it is designed with the

computer in mind.

146

Although the PIDGIN matcher may be improved by the

above techniques it is easier to understand if it is imagined that it searches the

complete data-base for a match each time. If the statement is a thought only

the corresponding thoughts need be examined (those with the same connector)

and each one is matched by first comparing each corresponding conception and

then comparing modifiers. If the statement is a conception only corresponding

conceptions (those with the same act) need be examined and each one is

matched by first comparing corresponding actors (subject, object, source and

destination) and then comparing modifiers. This may involve recursively

matching conceptions as the object of a conception may itself be a conception.

When two actors are compared it is the reference of the picture actor concepts

that are compared with the corresponding concepts of the pattern actor. The

reason for this is described later.

If the matcher finds a match then the binder (see Division 2.4;2D) is

used to make the pattern concepts the reference of the corresponding concepts

of the picture statement.

2.4.2B Actor Matching

The essential point about matching two actors is that not only do

identical actors match but if the picture is substitutable for the candidate then

they also match. This division describes when one actor is substitutable for

another.

2.4.2B1. Combinations of Actors

An actor may be a single actor or a band or class of actors. When

matching two actors there are nine possibilities all of which, except the last,

recursively call the actor matcher:

147

i) Picture actor is a band, candidate a band (conjunction

conjunction) . Each member of the picture band is matched against the

candidate band and must match at least one member. A complex case

is illustrated by the following example: John, Bill and Jill went bowling.

Did three people including two men go bowling? The above procedure

would succeed with this example. Note that the question is ambiguous,

it may mean exactly or at least the numbers specified. The two

interpretations result in different deep structures, either EQUAL or

MORE being used as the quantifier.

ii) Picture is a band, candidate a class (conjunction-disjunction). The

complete picture band must match every member of the class.

iii) Picture is a band, candidate a single actor (conjunction actor).

Every member of the band must match the single actor.

iv) Picture is a class, candidate a band (disjunction-conjunction). At

least one member of the class must match the complete band.

v) Picture is a class, candidate a class (disjunction-disjunction).

Every member of the picture class must match at least one member of

the candidate class.

vi) Picture is a class, candidate a single actor (disjunction-actor). At

least one member of the class must match the actor.

vii) Picture is an actor, candidate a band (actor-conjunction). The

actor must match at least one member of the band.

viii) Picture is an actor, candidate a class (actor-disjunction). The actor

must match all the members of the class.

148

ix) Picture is an actor, candidate an actor (actor-actor).

The quantifier, attributes, specifiers and nominals must match as

described below. Nested combinations of the above cases can be

matched using the above rules. Thus the following two questions would

succeed:

(Two boys and three girls)or(two girls and three boys) went

bowling.

Did five people go bowling?

Did at least two boys and at least two girls go bowling?

A single actor has the form (Input PIDGIN):

quantifier [attributes] nominal specifiers

therefore to match two actors involves matching four parts. The first

part matched is the two nominals, they match if and only if:

i) they are the same concept or either is in the EQUIV relation to the

other.

ii) the picture nominal is substitutable for the candidate nominal (see

Part 2.3C4 for an explanation of concept substitutability).

iii) the candidate nominal has the quantifier ALL and is substitutable

for the picture nominal.

If this comparison is successful the other three parts are matched in

the order quantifier, attributes then specifiers.

Any world model state containing one of the nominals quantified by ALL

may be used in order to check the general attributes and specifiers of that

nominal.

149

2.4.2B2 Quantifier Matching

Each quantifier can be an expression, number, number concept,

comparison or approximation. If it is expression it is evaluated, if possible, and

the following table specifies the way in which the two quantifiers are then

compared.

 Candidate

 C <MORE C> <LESS C>

 P P=C fail fail

Picture <MORE P> P<C PC fail

 <LESS P> P>C fail PC

If a number is specified as approximate (using ABOUT) then the

number is allowed to vary by 25%. The following examples illustrate these

rules:

Picture Candidate Result

<MORE 2> <EQUAL 3> succeed

<MORE 30> <MORE 40> succeed

<ABOUT 10> <EQUAL 12> succeed

<ABOUT 10> <EQUAL 14> fail

<EQUAL 5> <MORE 4> fail

<MORE 5> <MORE 4> fail

If one of the quantifiers contains an expression it is evaluated to a

number before the comparison, if it cannot be evaluated because it contains a

number concept that does not have a number as its reference then the match

fails. However, if two expressions are being compared and one or both cannot

be evaluated then the expressions themselves are matched. To make the

comparison the order of the arguments of both ADD and MULT is ignored and it

150

is sufficient for the two expressions to use the same number

concepts in the same places but not necessarily the same number concepts in

both expressions. Thus:

<MULT X <ADD 2 X>>

 succeeds with <MULT <ADD Y 2> Y>

 but fails with <MULT X <ADD 2 Y>>

Also a number concept in the picture will match any self-contained

expression (an expression containing no number concept used outside that

expression), thus in the limiting case a picture quantifier consisting of a single

number concept will match any expression, for example:

the picture <MULT A B>

will match <MULT <MULT X X> <MULT Y Y>>

2.4.2 B3. Attribute Matching

An attribute is a group concept being used to qualify a nominal. They

are matched in the same way as nominals except that attributes always occur

in an unordered band.

For example, COLOUR may be defined as RED, BLUE and GREEN, and

RED as SCARLET, ROSE and PINK, then if the picture is PINK the candidate

must be PINK, if the picture is RED the candidate must be PINK, ROSE,

SCARLET or RED.

The order of the attributes is not significant. If a picture attribute does

not match the candidate it is checked with the world model states that have a

matching nominal and the quantifier ALL. If is holds in the world model then the

comparison continues otherwise it fails.

151

2.4.2 B4. Specifier Matching

A specifier is a relation between two (or more) actors, it takes the

form:

(i) <relation actor>

or (ii) <<relation relmod> actor>

The relations are matched first, in the same way as two nominal

concepts.

If either relation has the second form above (where relmod,. is MAX,

MIN or MEAN) then both relations must have the same form and the same

relmod. If one relation is the INVERSE (see Segment 2.3C4c) of the other then:

if the picture actor has the form:- A <R1 B>

and the candidate the form:- C <R2 D>

then A must match D and B must match C for the two actors to match.

If a picture specifier does not match it is compared with the world model states

that have a matching nominal and the quantifier ALL, if a match is found the

comparison continues otherwise it fails.

2.4.2 C. Modifier Matching

The modifier is checked last. If two modifiers do not match the

conception may still be a satisfactory answer to the question. There fore a note

is kept of the conceptions that match except for their modifiers and if no other

match is found then they are used. However, if the only difference is the truth

modifier of the two conceptions then they are regarded as matching and the

152

match succeeds with the question denied (or the assertion

contradicted). The following rules are used:

i) Index: not checked

ii) Author: not checked

iii) Priority: not checked

iv) Truth: see above

v) Period: the two periods are matched like two attributes, if the

picture is EVENT it will match any candidate period, other wise they

must be the same.

vi) Manner: must be the same, except that if the picture is CAN the

candidate will match if no manner is specified.

vii) Degree: the degrees are matched by the specifier matcher.

viii) Location: the location specifier of a complete conception takes the

same form as the location specifier of an actor and is matched in the

same way.

ix) Time: this is matched by the specifier matcher. The time may

consist of one or more actors each of which specifies the number of

those time intervals, the accuracy of the result is taken as being

specified by the smallest time interval used. The candidate must be as

accurate or more accurate then the picture, for examp1e:

Picture <TIME [2 MONTH 1976 YEAR]>

matches <TIME [3 DAY 2 MONTH 1976 YEAR]>

but not <TIME 1976 YEAR>

153

x) Interval: this is only specified if the period EVENT is

specified. The interval is specified as one or more of a number of time

intervals. The two are matched in the same way as the time modifier

with the same rules as regards the accuracy of the interval.

2.4.2D Binding Statements

If a picture matches a candidate then the references of all the concepts

of the picture are altered to be the corresponding concept of the candidate. This

process is called binding. For example, if the assertion candidate:

JOHN PASS BOOK SELF BILL.

is matched by the question picture:

JOHN PASS AN OBJECT SELF BILL?

then the concept OBJECT in the picture will have its reference altered to

BOOK by binding.

Subscripted concepts may be used so that the same concept may take

different references, for example, matching the question:

A PERSON1 PASS AN OBJECT A PERSON1 A PERSON2?

will bind PERSON1 to JOHN, OBJECT to BOOK and PERSON2 to BILL. If

binding two statements would cause a concept (or one subscripted concept) to

take more than one reference then the binding fails. Matching and binding

occur in four circumstances:

i) When answering questions, this may involve evaluating associated

IF-rules.

ii) When problem solving certain connections between conceptions

(thoughts) are checked to determine what can be done.

154

iii) Consistency checking, this involves question-

answering.

iv) Command execution, this involves checking for certain

connections (for example, PRODUCE and ENABLE thoughts.)

These four circumstances can be reduced to two types of matching and

binding, question-answering and connection checking. These two differ slightly

in the way they are handled and they are described separately below.

a. Question-Answering

At the top-level conceptions are obtained directly from the user. If a

question is asked a matching assertion is looked for in the memory and if found

the information bound back into the question is used as the basis of the reply.

This means that at the top-level the concepts have references that are

determined by the questions that have been asked. For example:

Who took the book?

A PERSON PASS BOOK A PERSON2 SELF?

Might leave PERSON bound to JOHN (that is, JOHN as the reference of

the concept PERSON). If the next question is:

Who took the money?

then if the same concepts are used the question generated will be

asking if JOHN took the money. This problem is overcome by clearing all the

concepts in each question before it is matched. A concept is cleared by making

its reference equal to itself. An assertion in the memory may be associated with

a rule (by the IF connector). If such an assertion matches a question then the

rule must be evaluated before the question can be answered. Evaluating the

rule may result in secondary questions being matched and these in turn may

invoke further rules. The following sequence of steps describes the process of

155

matching, binding and invoking a rule in a way which prevents two

rules with a common concept from interfering with each other:

i) If the first conception of the rule (the header) matches the

question then

ii) all the actors in the header are bound to their corresponding

actors on the question, this is called forward binding and it is the only

place that information goes from a high level (the user is the top level)

to a lower level then

iii) all the concepts in the rule except for those altered by step (ii)

have their reference set equal to themselves (they are cleared), then

iv) the rule is matched, this may involve further question-answering

and rule processing. When comparing a rule question with the memory

only conceptions with a priority greater then 20 are considered (see

Segment 2.3De)

v) the references of all the concepts in the header are made the

references of the corresponding concepts in the question (back ward

binding, information is being carried back to the user) then

vi) all concept references altered by the above steps, except for those

that occur in the question itself, are reset to their value before step (i).

The above steps are analogous to function application in many

programming languages, step (ii) corresponds to passing the input parameters

into the function body, step (iii) to setting the local variables to some initial

value, step (iv) to executing the function, step (v) to returning the results and

step (vi) to resetting local variables to their previous values. The above steps

are also similar to the pattern-directed procedure invocation in PLANNER, but

156

they can better be thought of as forming a meaning-directed rule

invocation. The following example illustrates the above steps:

1. A PERSON <EARN <SUB <MULT H R> T>POUND>

2. IF THE PERSON < WORK = H HOUR>

3 . AND THE PERSON <RATE = R POUND>

4 . AND THE PERSON <TAX = T POUND>

5. JOHN <EARN =X POUND>?

i) Conception 1 matches question 5.

ii) PERSON in 1 is bound to JOHN in 5, i.e. the input parameter is

passed.

iii) H, R and T are cleared, i.e. locals initialised.

iv) The rule (lines 2, 3 and 4) is matched to find HOURS H, RATE R and

TAX T for JOHN, answering these questions may involve using other

rules, i.e. function execution.

v) Conception 1 is bound into 5, the expression is evaluated and the

result made the reference of X, the result is returned.

vi) PERSON, H, Rand T are reset, so their reference is the same as

before step (i), i.e. locals are reset.

b. Connection Checking

This is similar to question-answering, consider:

1. A PERSON <POSS AN OBJECT>

2. ENABLE THE PERSON PASS THE OBJECT SELF A PERSON2.

3. A PERSON PASS AN OBJECT SELF A PERSON

4. PRODUCE THE PERSON2 <POSS THE OBJECT>

These thoughts give information used when a command is obeyed and

when problem solving, for example:

5. JOHN PASS A BOOK SELF BILL.

157

will match conception 2 and then the following occur:

i) conception 2 is bound to 5.

ii) the conception 1 is matched, in this case

JOHN <POSS THE BOOK>.

is checked.

iii) any concept whose reference is altered by steps (i) of (ii) is reset to

its value before step (i).

A similar series of steps occurs when matching 5 with the PRODUCE

connection except that the conception matched at step (ii) is treated as a

question for ENABLE and as an assertion for PRODUCE.

2.4.3 Deduction

The last section has described how IF-rules are invoked if a question

cannot be answered directly from the memory. An IF-rule is an explicit

statement of a deduction that can be made. It is based on the rule of modus

ponens, namely given as premises a conditional proposition and the antecedent

of that conditional, the consequence of the conditional may be drawn as

conclusion. For example, given P ->Q and P,Q may be deduced, or in its

PIDGIN form given Q IF P and P,Q may be deduced. This is also the method of

deduction used by PLANNER in the form of goal-directed consequent theorems.

As well as this explicit deduction there is also a form of implicit

deduction that occurs during matching in PIDGIN. All of this implicit deduction

must be done explicitly in a system such as that of Winograd because the

programming language used as the deep structure was not restricted to handle

only those patterns required by the deep structure of language. It is this

158

implicit deduction that justifies the phrase "meaning-directed" as

applied to PIDGIN's evaluation as opposed to the "pattern-directed" evaluation

of PLANNER. The following simple example illustrates implicit deduction.

Consider the deduction:

Fido is a dog.

All dogs are animals.

so

Fido is an animal.

In Micro-Planner this becomes:

(THASSERT (DOG FIDO))

(DEFPROP THEOREMI

 (THCONSE (X) (ANIMAL $?X).

 (THGOAL (DOG $?X)))

THEOREM)

(THGOAL (ANIMAL FIDO) (THTBF THTRUE))

It can be seen that explicit deduction is required. In PIDGIN it

becomes:

FIDO<SUB A DOG>.

ALL DOG<SUB AN ANIMAL>.

FIDO<SUB AN ANIMAL>?

Because the SUB relation is part of the basic system it is possible to

define it in such a way that an assertion using .SUB causes the information to

be stored in a way which may be efficiently utilised later (probably in some

form of tree structure). Thus when the question is asked it can be answered

directly from this structure with out needing to search the memory. Further,

this information can be used whenever a question involving the concept

ANIMAL is matched against an assertion containing the concept FIDO, for

example:

JOHN PASS FIDO SELF BILL.

JOHN PASS AN ANIMAL SELF BILL?

159

This last question can be matched directly with the

assertion after making the implicit deduction that Fido is an animal. Implicit

deduction cuts down the amount of backtracking required to solve a problem

especially when the conceptions involved are complex. However, there comes a

point when it becomes more convenient to use explicit deduction. The following

examples illustrate this. a. Example 1 The relation AUNT can be defined from

the relations PARENT and SISTER by means of the rule: A WOMAN <AUNT A

PERSON>

IF THE WOMAN <SISTER A PERSON>

. AND THE PERSON2 <PARENT THE PERSON>.

Then whenever the relation AUNT is used the above rule can be applied

to test if the relation is true by trying to find a third person who is the sister of

one and the parent of the other person. For example, if:

JILL <SISTER BILL>.

BILL <PARENT JOHN>.

Then if the question:

JILL <AUNT JOHN>?

is matched against the memory a search will first be made for a

conception that matches directly, if none is found then the IF-rules are

searched. In the above case the IF-rule does match (assuming BILL and JOHN

are PEOPLE and JILL is a WOMAN) and the question is forward bound into the

rule. Note that the rule specifies that only WOMAN can be related to PERSON by

the relation AUNT. This stops the system from trying the rule if the first person

is not a WOMAN and thus it implicitly asserts that all AUNTS are WOMAN. After

matching and binding the header the body of the rule is matched. The body of

the above rule is a conjunction of two conceptions. Matching involves both of

these conceptions, both must successfully match the memory for the complete

rule to succeed. However, it is not clear in which order the conceptions should

160

be matched. The most straightforward way is to match them in the

order in which they occur but it will be shown below that in some cases this can

be extremely inefficient. In this case the rule to be matched consists of the two

questions:

JILL <SISTER A PERSON2>?

A PERSON2 <PARENT JOHN>?

Both questions contain two actors whose nominals are a group and an

entity concept. The most efficient to match first is the question containing the

group concept which has the least number of concepts that can be substituted

for it. In this case the two group concepts are the same so the next step in

trying to choose the most efficient order would be to estimate the average

number of PERSON in the SISTER relation as opposed to the average number of

PERSON in the PARENT relation. At this point the calculation of the most

efficient order is becoming as lengthy as the search itself and so they are

matched in the order they occur. With large data-bases and long search times it

would probably become more efficient to spend longer on the estimate of the

best order of evaluation and to do this some way of maintaining the necessary

statistics would need to be developed. The first question matches the memory

and PERSON2 is bound to BILL. The second question will then succeed. Finally,

WOMAN, PERSON and PERSON2 (all the concepts not in the original question

that have had their reference altered) are reset and the original question

succeeds. If the question had been:

Who is John's aunt?

A WOMAN <AUNT JOHN> ?

then this question would also have matched the IF-rule but the two

conceptions of the rule would then become:

A WOMAN <SISTER A PERSON2>?

A PERSON2 <PARENT JOHN>?

161

and in this case it is clear that it is better to match the

second question first. In general the following rules give a good indication of

the best order: i) match the conception with the least number of group

concepts first. If this does not give an unique conception then ii) match the

conception with the most number of more specific group concepts first. . If a

concept, A is more specific than a concept, B, then B can be substituted for A.

For example, if the group concepts involved in the conceptions are:

1. ANIMAL ANIMAL

2. PERSON ANIMAL

3. PERSON DOG

then the order of matching becomes 3, 2, 1 because PERSON and DOG

are more specific then ANIMAL. That is, (1) comes last because its group

concepts are the least specific (2) comes next because one of its concepts is

more specific and (3) comes first because two of its concepts are more specific.

If this does not give an unique conception then iii) match in the order they

occur in the rule. For the case of the above two questions the second. should

be matched first (rule (i». This then gives the question:

A WOMAN <SISTER BILL> ?

and this binds WOMAN to JILL. Finally, PERSON and PERSONZ (all the

concepts not in the original question that have had their reference altered) are

reset and the original question succeeds with WOMAN backward bound to JILL.

The answer can then be framed from the changes that have occurred to the

group concepts in the question. If there have been no changes (or no group

concepts) then the answer is "Yes" if the question succeeds and "No" if it fails.

Other wise the answer is constructed from the changes, in this case a suitable

answer would be:

Jill.

162

b. Example 2

The following rule calculates the number of sub-parts of a part. This is

followed by a detailed description of its use for an example which involves the

rule being used recursively.

<MULT M N> OBJECT <PART OBJECT3>

IF =M OBJECT <PART AN OBJECT2>

AND =N OBJECT2 <PART AN OBJECT3>

5 FINGER <PART HAND>.

1 HAND <PART ARM >.

2 ARM <PART MAN >.

=X FINGER <PART MAN >

1 The memory is searched for a match to the question but none is

found so the IF-rules are searched and a match is found binding OBJECT to

FINGER and OBJECT3 to MAN. The rule is then matched and the first conception

matches binding M to 5 and OBJECT2 to HAND. The question:

=N HAND <PART A MAN>?

is then asked causing the IF-rule to be used recursively (because the

question cannot be matched with any conception in the memory). The first

conception of the rule then becomes:

=M HAND <PART AN OBJECT2> ?

and th1s matches and binds M to 1 and OBJECT2 to ARM. The second

conception then becomes:

=N ARM <PART MAN>?

and this matches and binds N to 2. The rule is then complete and the

expression can then be computed giving 2 which is made the reference of N. All

the other changed concepts are reset to the reference they had on entry to the

rule. The first level use of the rule is then complete and the expression can be

computed (M has reference 5 and N 2) giving 10 which is made the reference of

X and all the other concept reference changes are reset. The original question

163

thus succeeds leaving the number concept with the reference 10.

This can be used as the basis of the reply:

10

2.4.4 Problem Solving

The problem solving ability of PIDGIN is derived directly from the deep

structure. Problems are typically solved with a computer by writing a program

using the usual programming language features such as declarations,

assignments, goto's, labels, looping and so on. If these were incorporated into

PIDGIN much of its potential for answering questions about its own structure

and the ability to teach it how to solve problems conversationally would be lost

because such programming features do not combine easily with the linguistic

deep structure. The problem is what features can be added to PIDGIN to take

the place of these programming language features that will fit easily into the

over all linguistic framework and yet still provide a "programming" type of

problem-solving ability.

People use English to teach other people how to solve problems. This is

done by explaining what situations to avoid, what types of situation to aim for,

rules for recognising both situations and procedures for avoiding and achieving

them. All this information can vary from the explicit rule ("Avoid...!") and

procedure ("Always do this and this and this") to the vague rule ("Look out for

something like...") and procedure ("It sometimes might help to..."). This

section describes how this type of information can be incorporated in and used

by PIDGIN. The way this is done can in some ways be regarded as the

1ingui~tic equivalent of the techniques used by General Problem Solver

(Newell, 1961a and 1961b).

164

The basic idea is to use actions to reduce the difference

between the current state and the desired state. But, unlike GPS, PIDGIN works

within a particular linguistic framework that guides and improves the whole

strategy. This is possible because of the large amount of knowledge contained

in a conception in the form of its potential associations through memory

compared to the sparse logical framework used by GPS.

Two problem solving techniques are used by PIDGIN, called scheming

and planning. Scheming is the name given to the operations necessary to form

a scheme and planning to those necessary to form a plan. A scheme is a

sequence of states leading to the desired state and a plan is a sequence of

actions leading to a state within a scheme (possibly the desired state). In

anyone problem description there is one current desired state (for example

checkmate in chess) and a scheme is a description of some of the intermediate

states that it is thought necessary to reach before the desired state can be

reached. When problem solving the first thing done i3 to form a scheme. This

will consist of the desired state preceded by zero or more states that it appears

necessary to achieve, in the order given, before the desired state can be

reached. Once a scheme has been found a plan can be made, this will consist of

a sequence of actions that should achieve the first state in the current scheme.

Finally, the first action will be performed; this will change the world model. If

the environment reacts to the action (for example the opponent makes a move

in chess) then both the current plan and scheme may need to be reformulated

before carrying out the next action.

2.4.4A Notation

Before describing the problem solving technique in more detail it is

necessary to define a number of terms:

165

A state is a conception consisting of one subject actor and

the act BE.

A current state is one that can be found in the memory.

The world model is all the current states.

A feeling is defined using a specifier with the FEEL relation.

A positive (negative) feeling is a GOOD, STRONG and ACTIVE (BAD,

WEAK and PASSIVE) one. An actor has a positive (negative) feeling if it is

qualified by the FEEL relation and the total of the co-ordinates specified is

positive (any co-ordinate not specified is assumed to be zero) (negative). One

feeling is more positive (negative) than another if the total is greater (less)

than the other.

The feeling (of PIDGIN) is the (one) feeling currently associated with

SELF (the PIDGIN system) in the world model.

A positive (negative) state is one that is associated by a thought with a

positive (negative) feeling of the PIDGIN system.

The desired state is the most positive state.

An enabled action is an action that is enabled by the current world

model (via the ENABLE connector or CAN modifier).

An action is positive (negative) if it produces a positive (negative)

state.

A state is short-term positive (negative) if it enables a positive

(negative) action.

166

A state is a long-term positive (negative) if it suggests a

positive (negative) state.

The final state is the desired state and it terminates the problem.

Similarly the final action is the action that leads to the final state and the short

and long term final state and action are similarly defined.

A final world is a world model that contains the final state.

A positive (negative) world is a world model containing the positive

(negative) feeling.

A step consists of obeying one enabled action. This results in a new

world model.

A possible world is a world that can be reached from the world model

by one or more steps.

The uncontrollable future consists of all the possible worlds that can be

reached solely by steps in which the subject is not SELF (it being assumed that

if the subject is SELF then the step is controllable).

A positive (negative) scheme is a sequence of positive (negative)

states.

A practical scheme is one in which the first state is suggested by a

state in the current world model and that state suggests the next state in the

scheme and the last state of the scheme is a final state.

A positive (negative) plan is a sequence of positive (negative) actions.

A practical plan is one in which each action produces a world model that

enables the next action in the plan and the first action in the plan is enabled by

167

the current world model and the last action produces a state in a

practical scheme.

2.4.4B. Scheming and Planning

Scheming involves producing a practical positive scheme and planning

involves producing a practical positive plan. A scheme is generated by:

SELF COGITATE A SCHEME.

and a plan by:

SELF COGITATE A PLAN.

Only one scheme and one plan may be actively in use at anyone time.

They are called the current scheme and plan and are the reference of the

concepts SCHEME and PLAN. If there is no current scheme (SCHEME is clear)

then the second command above must generate a plan that leads to a final

world.

The way in which a scheme and a plan are generated will be described

by means of examples.

168

a. Example I - Monkey Puzzle

The problem is how can the monkey reach and eat the banana.

Monkeys can solve this problem, can PIDGIN? The following statements

describe the problem:

1. Bananas are food

2. PI, P2 and P3 are places.

3. PI is below the banana, P2 at the box and you are at P3.

4. Eating makes you feel good.

5. Standing on the box under the banana enables you to eat it.

6. Standing by the box enables you to get on it.

7. You can move the box from place to place.

B. What do you do?

This description of the problem must first be translated into PIDGIN as

follows:

1. ALL BANANA <SUB A FOOD>..

2. P1 <SUB A PLACE>. P2 <SUB A PLACE>. P3 <SUB A PLACE>,

3. P1 <BELOW BANANA>. BOX <LOC P2>. SELF <LOC P3>.

4a. SELF TRANSFER A FOOD A PLACE MOUTH..

b. CAUSE SELF BECOME SELF <FEEL 100 GOOD>.

5a. SELF <ABOVE BOX <BELOW BANANA>>

b. ENABLE SELF TRANSFER BANANA A PLACE MOUTH.

6a. SELF <LOC BOX>

b. ENABLE SELF TRANSFER SELF A PLACE

A PLACE2 <ABOVE BOX>

c. PRODUCE SELF <ABOVE BOX>.

169

7a. BOX <LOC A PLACE>

b. ENABLE SELF TRANSFER BOX A PLACE A PLACE2

c. PRODUCE BOX <LOC THE PLACE2>

d. AND SELF <LOC THE PLACE2>.

8a. SELF [CAN] TRANSFER SELF A PLACE A PLACE2

b. PRODUCE SELF <LOC THE PLACE2>

The problem is how to reach the desired state from the current world

model. First a scheme is constructed by:

SELF COGITATE A SCHEME.

This command directs the system to formulate a scheme. The first step

is to look for all occurrences of the final state. This will be a suggested state, a

produced state or, as here, a caused BECOME action.

If the only occurrence is a suggest state then this is set up as the first

step of the scheme and the search is repeated with that state as the required

one. Otherwise the action producing or causing the state is examined and a

search made for enabling states and causing actions. In this case the action

(4a) matches 5b and this is enabled by 5a. The enabling state (5a) becomes

the first state of the scheme because if it is reached the final desired state can

be reached (by action 4a).

This procedure is repeated with this enabling state taking the place of

the final state (that is, the enabling state is set up as a sub-goal leading to the

final goal). This state (5a) says that SELF must be ABOVE the BOX and the BOX

must be BELOW the BANANA. But the BOX is not BELOW the BANANA therefore

this state must be reached before the scheme is complete. Also SELF is not

ABOVE the BOX so this state is also added to the scheme.

This final sub-goal SELF <ABOVE BOX> has been generated by splitting

the complex conception (5a) into two sub-goals. It matches the state at 6c

170

which in the same way adds SELF <LOC BOX> (6a) to the scheme.

This matches the state 8b and the scheme is complete because the action that

produces it has the CAN modifier and so is permanently enabled. This is the

first time in the scheming that an enabled action has been found. When this

happens the scheme is complete and practical because it leads from the current

world to the final world. Scheming is also terminated if all the outstanding

states required are in the world model. The complete scheme is:

[SELF <LOC BOX>

BOX <BELOW BANANA>

SELF <ABOVE BOX>]

Using this scheme the systems must next construct a plan for reaching

the first state. This is done by the command:

SELF COGITATE A PLAN

A plan is constructed by searching for an action that produces the first

state, this is found (action at 8a) and the plan is complete because the one

action leads from the current world model to the one required in a single step.

The plan is:

SELF TRANSFER SELF P3 BOX.

If this is carried out by:

SELF DO THE PLAN.

then the first state of the scheme will be deleted and the state:

SELF <LOC BOX>.

will be added to the world model by PRODUCE thought 8. The next plan

will lead to the state BOX <BELOW BANANA> and as P1 <BELOW BANANA> this

171

is the same as BOX <LOC P1> using the systems built in knowledge

that BELOW specifies a location and LOC is symmetrical. This state can be

reached by the one step plan:

SELF TRANSFER BOX P2 P1.

which when carried out leaves SELF <LOC P1> as well as the BOX. As

SELF <LOC BOX> (LOC is transitive and symmetrical therefore SELF <LOC PI>

and BOX <LOC PI> implies SELF <LOC BOX>), the final state of the scheme

can then be reached by the one step plan:

SELF TRANSFER SELF P1 A PLACE2 <ABOVE BOX>.

which produces SELF <ABOVE BOX>, which enables:

SELF TRANSFER BANANA A PLACE MOUTH.

which causes the BECOME action which gives the desired final state.

As soon as the desired state is reached the feeling of the system is

reduced to zero so that it is then ready to solve another problem. The scheme

and plan should be noted at each step of this problem solution because they

are the systems understanding of what it is doing and are used to answer

"how" and "why" questions. For example, the answer to:

Why did you move the box?

is

I wanted the box under the banana.

and the answer to:

How did you get the banana?

is

172

I went to the box, moved the box under the banana, got

on the box and eat the banana.

It can be seen that these replies are obtained from all or part of the

scheme ("why" questions) and plan ("how" questions) at each point. The

following step by step descriptions of scheming and planning give a more

detailed account of the processes:

i) Scheming.

1. Make the required state the desired state.

2. If all the required states are in the current world model then the

scheme is complete and the scheming succeeds.

3. Search for a thought (suggest, produce or cause) that leads to (has

as its second conception) the required state. If none can be found go

back one step in the scheme and search for another thought. If no

steps remain scheming fails.

4. If it is a suggest thought add the required state to the scheme and

make the first state of the thought the required state, go to step 2.

5. Otherwise the thought (produce or cause) contains an action.

Produce a scheme for each of the states that enable the action and add

to the main scheme. Go to step 2.

ii) Planning

1. Make the required state the first state of the current scheme.

173

2. If all the required states are in the current world model

then the plan is complete and the planning succeeds.

3. Search for an action that produces or causes a required state. If

there are then no outstanding required states check the plan by

carrying it out internally (resetting the world model back to its original

condition when complete). If the plan succeeds add the action to it,

otherwise search for another action. If no other action can be found go

back one step in the plan and search for another action. If no steps

remain then no plan is found and the planning fails.

4. Add the states that enable the action found to the required states, go

to 2.

The scheming and planning algorithms outlined above work back wards

from the desired state because there will typically be a large number of enabled

actions causing a forward search to have to investigate a highly-branching tree

of possible worlds. One problem with a back ward search is an action can

produce a state that prevents a later action. To try to guard against this the

plan being generated is checked whenever possible and" altered if this is found

to occur. However, the method outlined can still fail to find a practical plan if it

involves substantial changes to the world model.

An alternative would be to find some means of pruning the forward-

search tree using a static evaluation function that could be combined easily

with the features of PIDGIN. One way of setting up such an evaluation function,

using the pattern matching ability and VALUE relation of PIDGIN, is mentioned

in the next section.

174

b. Example 2 - The Mikado Problem

A more complex problem enables certain further features of the

problem solver to be described. The following is a PIDGIN description of the

Mikado problem:

1. ALIVE <SUB AN ATTRIBUTE <FEEL 100 GOOD>>.

2. DEAD <SUB AN ATTRIBUTE <FEEL -100 GOOD>>.

3. KOKO <SUB A MAN>. KATISHA <SUB A WOMAN>

4. WIFE <SUB A RELATION>. HUSBAND <INVERSE WIFE>.

5a. A MAN <HUSBAND A WOMAN2 > [NOT]

b. AND A WOMAN <WIFE A MAN2 > [NOT]

c. ENABLE THE MAN BECOME SELF <HUSBAND

 THE WOMAN>

d. AND THE WOMAN. BECOME SELF <WIFE THE MAN>.

6. KOKO <HUSBAND A WOMAN> [NOT].

7. KATISHA <WIFE A MAN> [NOT].

8a. KATISHA <WIFE A MAN> [NOT]

b. ENABLE KATISHA TRANSMIT

c. <NANKIPOO DO AN ACTION

d. CAUSE A PERSON2 BECOME [HURT] SELF>

 SELF MIKADO

e. CAUSE [ALlVE] NANKIPOO

f. BECOME [DEAD] SELF.

9a. [ALIVE] NANKIPOO

b. ENABLE KOKO TRANSFER NANKIPOO A PLACE

 A PLACE2 <LOC MIKADO>.

10a. NANKIPOO <LOC MIKADO>

b . ENABLE MIKADO PERCEIVE NANKIPOO.

11a. MIKADO [NOT] PERCEIVE NANKIPOO

b. CAUSE KOKO BECOME [DEAD] SELF.

12. [ALIVE] KOKO. [ALIVE] NANKIPOO.

13. SELF <EQUIV KOKO>

This is more difficult than the Monkey Puzzle because of the increased

complexity of the thoughts including the use of NOT, because the system is

being asked to solve someone else's problem and because the system starts in

a final state and the problem is to avoid any future deviation from that state.

The situation as described above enables Katisha to accuse Nankipoo,

as she is unmarried, and this will cause Nankipoo to die which will prevent Koko

from taking him to Mikado and so Mikado will kill Koko.

If the command:

175

SELF COGITATE A SCHEME.

is obeyed then it will be found that SELF (KOKO) is already in the

desired state (ALIVE). In this case a check is made to see if this is likely to

change in the uncontrollable future. In this case Katisha can denounce

Nankipoo because she is not married and this will cause Nankipoo to die which

will cause Koko to die because he will not be able to take him to Mikado. This is

a bad thing in the uncontrollable future therefore an attempt is made to find a

scheme that will prevent it happening. This is possible because although the

future is uncontrollable the present can be controlled to some extent (as

described by those enabled actions whose subject is SELF), and an action can

change the uncontrollable future.

The sequence of actions outlined above must be prevented, this can be

done by carrying out an action which removes some enabling state from the

current world model. Katisha being unmarried (8a) is the first enabling state

and this can be disabled by thought 5 because this enables action 5d. This is

enabled for Koko and Katisha only therefore the solution is for them to marry.

Working backwards on a scheme Koko must transfer Nankipoo to the

location of the Mikado (9b, 10 and 11). To do this he must be alive (9a) so

Katisha must be stopped from accusing him (8b,c,d,e,f). This can be done by

Katisha becoming a wife of a man (8a). For this to happen Katisha and the man

must be unmarried (5a,b). Katisha and Koko are unmarried (6,7) therefore if

they get married this will prevent Koko dying. The scheme is:

[KATISHA <WIFE KOKO>

NANKIPO <LOC MIKADO>]

and the action required is:

KOKO TRANSFER NANKIPOO A PLACE A PLACE2 <LOC MIKADO>.

176

In both the above examples the problem could have been

expressed in many different ways. For example, in practise the rules would

probably be more general and contain more criteria. The above examples were

set up with the bare minimum of knowledge required to express and solve the

problem.

2.4.5 Teaching and Learning

If a computer modifies its output because of some input then it can be

said to have learnt from or 'to have been taught by that input. Thus

programming can be regarded as teaching the computer. This is the most

important type of learning in the current PIDGIN system - being taught new

facts and rules by the user in Input PIDGIN (and eventually in English). It is

hoped that by this means the computer can eventually be used by the people

with the problems in order to help them to solve those problems without

needing to translate their problem into a conventional programming language.

Conversational problem solving systems will provide people such as managers,

designers, engineers and scientists with a means whereby they can explain

their problem in English (plus mathematical notation} with conversational

advice from the computer on inconsistencies and ambiguities so that these can

be eliminated as they arise. In this way the computer becomes a tool to help

the human problem solver unravel the solution and at the same time teach the

computer the answer so that the solution and the program for solving the

problem arise together. The computer is not being asked to, and is not

expected to, behave "intelligently" it is there to do what it is told and to

complain if it finds that it cannot do it. PIDGIN is a small step in enabling this to

be done conversationally in English rather than involving special codes and

languages, card punches and verification, turn-around and transcription errors,

incomprehensible and useless error numbers, core dumps and cryptic

177

messages, octal, hexadecimal, job control and all the other

paraphernalia and secondary problems that separate the user from the real

problems and require the intervention of human aid in the form of a

programmer in order to sort it all out.

However, there is more to learning than programming. It is possible

with certain problems to set up systems that learn from the short-fall between

their behaviour and their expectations. Although little work has been done to

investigate the potential of PIDGIN in different learning situations it is felt that

the nature of the linguistic deep structure will enable some interesting learning

possibilities to be investigated. In order to provide a framework for

investigation four types of learning are distinguished - rote, rule, ratified and

regulated.

a. Rote Learning

Rote learning is here taken to mean that the item learnt is simply

added to some list or table of items. However, this is not intended to be a

definition merely a description of how rote learning is usually implemented.

From the point of view of a user a system which only rote learns can only

answer questions that directly refer to the information learnt, no deductions are

made. Rote learning is often called "parrot learning" when it is done by people,

this term indicates that the material was not understood, that is, incorporated

in the person's memory in such a way that it could be used to relate diverse

other information together, but was simply remembered as a self-contained

item. In fact quite often a large amount of material must be learnt like this

before inter-relationships and connections can be pointed out and understood.

A similar step occurs when using PIDGIN, simple definitions and states are rote

learnt. It is not until the rules and connections that combine them are learnt

that they can be related and so properly understood.

178

b. Rule Learning

Rule learning is the name given to the incorporation of sequences of

PIDGIN conceptions (in the form of plans, schemes, rules and thoughts) in the

memory. More generally programming is a form of rule teaching and in human

situations much advice and teaching takes the form of rules. Although a rule is

rote 1earnt,in use it expresses complex relationships between other items. This

type of learning forms the basis of PIDGIN's learning ability as has already been

described. In PIDGIN the word "rule" refers to "IF-rule", that is, a conception

connected to one or more other conceptions by the connector IF. Such rules

form the basis of PIDGIN's explicit deductive ability (see Section 2.4.3) and

correspond in many ways to the consequent theorems of PLANNER. They are

automatically invoked by question-answering if the question cannot be

answered directly from the memory.

c. Ratified Learning

Ratified learning takes place when the system generates new

statements and then confirms them with its environment. In people this type of

learning perhaps corresponds to thinking, that is, ana1ysing known facts and

thus discovering new relationships and predicting likely hypothesis. In PIDGIN

there is a special mode in which the system can generate hypotheses (see

Section 2.4.1) check them with its memory for consistency and then confirm

them with the user for validity. The essence of this mode of working is

hypothesis formation. In PIDGIN this is very simple and as a consequence the

user gets inundated with trivial questions. It is done by choosing a conception

and then creating a more general but consistent conception from it. This is

done by making one or more of the actors in the conception vaguer by omitting

qualifiers and by replacing the nominal by its category concept.

179

PIDGIN can also learn by asking questions about vague or

unspecified parts of a conception. For example:

John went to the park.

JOHN TRANSFER SELF A PLACE PARK.

immediately leads to questions such as:

Where did he come from?

How did he get there?

What time did he go?

How long was he there?

How long did it take him?

Did he intend to go?

because these questions correspond to information missing from the

original assertion. PIDGIN is thus always aware of what it does not know.

Rote and rule learning fill up the memory and slow down the system

(except when one rule replaces a number of old rules or facts). But the essence

of creative learning is - "to learn is to forget". That is, to learn is to forget what

is not essential. Such learning frees the memory and speeds up the system.

The usual price to be paid for replacing a precise rule by a more general one is

that the general rule does not always work and has to be backed up by

auxiliary rules for special cases. However, this is the way that science advances

from data to special rules to general rules and then to general rules plus more

data and special case rules and then still more general rules and so on. It is

hoped that one day computers will be able to assist in the formulation and

analysis of these rules.

d. Regulated Learning

Samuel's checker player (Samuel 1959) was one of the first computer

programs to successfully learn to improve its performance by playing. The

general scheme of the learning mechanism used is to associate each one of a

180

set of state or pattern recognisers with a weight in order to adjust

its importance relative to the others. The sum of the product of the states and

weights can then be used to assign a figure of merit to any situation. For

example, in a board game to rate each possible next move so that the best can

be chosen. Learning is achieved by regulating the weights in such a way that

good board positions are rated well and bad positions rated badly. In Samuel's

program the state recognisers were carefully constructed using knowledge

derived from human checker players and the weights were then discovered by

the program through playing games with good checkers players. One limitation

of Samuel's original program was that it simply added all the weighted states

together so if one state was important only in combination with one or more

other states such a technique would not be able to take advantage of the fact.

It would be possible to include such a learning technique in PIDGIN so

that it could be utilised to improve scheming and planning. A state may be

associated with a good, strong and active rating using the VALUE relation and

this can be regarded as a weight. Further, in PIDGIN states may be combined

using conjunction and disjunction and negated using NOT and the combination

can be assigned a weight by specifying that is suggests some other state and

assigning a weight to that state. A system can be envisaged in which these

weights are improved in a forward search game-playing environment but this

has not been investigated in detail.

A more interesting possibility is to combine ratified and regulated

learning so that the hypotheses generated were new state recognisers and the

ratification was not obtained directly from the user but by using them in a

regulated learning environment. A number of improvements suggest

themselves, for example, generating the hypotheses by generalising only the

most successful state recognisers. However, this possibility has not been

181

studied because the way in which hypotheses should be generated

and ratified is such an enormous problem.

182

CHAPTER 3 EIKASIA - A PIDGIN BASED CHESS

SYSTEM

Winograd chose to base his conversational system on a toy-world

consisting of coloured b10cks that could be moved around a table-top by

means of a crane. By thus sharply delimiting the context Winograd could

construct a self-contained and complete system. His system accepts most

grammatical English sentences directly related to this toy-world and framed in

a particular vocabulary. By defining a toy world the limitation of vocabulary are

made less arbitrary and the semantic relationships are well defined. Many

conversational systems in the past have foundered on the cliffs of language.

Those that have tried to reduce the size of the problem have usually done so in

a way that does not effectively restrain the user. For example, although

baseball seems like a well-defined single subject questions about baseball can

quickly extend into many other areas. Winograd easily and neatly defines a

small part of English by placing the user in a new world of just a few objects

and relationships. The limits of this world are largely written on its face and

though the awkward user might ask "What is under the table" or "How often do

you oil the crane" he should not be surprised at the systems response.

In order to test some of the ideas in PIDGIN with a practical problem it

was necessary to find a toy-world in which to work. It was decided that a two

kings, one pawn chess-endgame was a suitable, well defined problem. It has

fewer objects than Winograd's toy world and a better defined co-ordinate

system but the relationships between the objects are much more subtle. Also,

an algorithm for solving this chess endgame was available from S. Tan at

Edinburgh University (Tan 1972). The predicates and action schemes defined in

this algorithm were taken as the basic actions and states in a conversational

183

PIDGIN system called EIKASIA.

3.1 A History of Chess Systems

The history of computer chess divides, approximately into two camps,

the first is concerned with writing a program that will beat as strong a human

player as possible, the second is concerned with the chess problem only in so

far as it embodies other more general problems. EIKASIA is in the latter camp.

As a chess player EIKASIA is very poor but it is still of interest because of the

way in which it is constructed. A program that played chess at grandmaster

level would only be of interest in so far as it demonstrated general problem-

solving techniques and EIKASIA is clearly a general problem-solver.

Some of the work in the latter camp has been done without actually

writing a computer program that plays chess. An important early paper on the

subject was written by C. Shannon (1950). In this paper he lays down features

that he considers necessary for inclusion in any chess program. Some of these

features are details of evaluation functions, static positions and minimax as well

as forward pruning of the search tree. Later Turing (1950) published a paper

extending Shannon's ideas and then Samuel (1959) produced a paper which,

though it concerned a checkers playing program, described how many of these

ideas had been built into a practical program.

The first chess program to incorporate these ideas was written by

Bernstein (1957). This program aroused some public interest and it managed to

play at "passable amateur" level taking an average of two minutes per move.

Also at about the same time Newell, Shaw and Simon wrote a chess playing

program based upon ideas from GPS (Newell 1958). This program was

fundamentally similar to the other work that had been done but it approached

184

the subject from a different viewpoint, that of the goal/sub-goal

scheme. They also introduced further refinements to tree-searching including

the alpha-beta algorithm.

From 1958 until recently the only notable contribution has been a paper

by Good (1968) listing a number of features and ideas to bear in mind when

writing a chess program. Good's paper is a major summary and analysis of the

complete field and the fact that his idea do not seem to have been acted upon

until recently suggests that most chess programmers in the first camp regard

the problem as simply a programming one.

In 1973 A.L. Zobrist and F.R. Carlson published a paper (Zobrist 1973)

describing a chess program that had been designed with a slightly different

objective from usual. Their system was designed so that it could be given

"advice" by expert human-chess players. This advice was given in the form of

routines written in a simple language based on chess notation. Chess players

with no previous computer programming experience could quickly learn this

language and use it to correct faults in the programs play. One of the

difficulties of writing chess programs has been the difficulty of translating chess

knowledge into computer notation. By enabling the chess expert to "program"

the computer directly it was hoped to overcome the translation problem. The

routines that can be defined in their language consist of a pattern and a

weighting. The system uses the pool of routines to try to find patterns on the

board and associate weights with them. The system is set up so that the

patterns are independent of the actual positions of the pieces but only depend

on their relative positions. For example, a routine can be defined that matches

bishops and knights on the back row and returns a negative weight. This would

185

tell the program to "get your bishops and knights off the back row".

This type of advice corresponds to SUGGEST connections in PIDGIN.

Their system uses this advice as a form of static evaluation function to

prune the look-ahead tree. They go on to say that they believe computers will

use advice-taking for the performance of tasks that demand more "intelligence

than is needed for the simple clerical chores they now perform.

The language accepted by Zobrist's program is a very simple

programming code. It would seem that a much more sophisticated input

language is required to improve the performance. However, such a language

cannot be a normal programming language otherwise no problem has been

solved. I have taken PIDGIN as this language and have tried to justify this by

considering the design of a PIDGIN based two kings, one pawn chess-endgame

playing program called EIKASIA.

3.2 A Description of the Endgame Problem

Most chess playing programs let the endgame take care of itself. In fact

the seemingly trivial single pawn ending is more difficult than most puzzle

problems. It has the additional advantage that human players seem to use

knowledge gained from chess literature to solve it but at the same time there is

no obvious numerical evaluation function that can be used. The problem thus

requires a solution that involves storing and efficiently utilising a great deal of

specific chess knowledge.

The work done by S. Tan at Edinburgh University (Tan 1972) illustrates

one method for storing such knowledge. Other work has been done on the

endgame problem (Huberman 1968) but the approach taken by S. Tan fits in

well with ideas incorporated in PIDGIN. The program developed by Tan is a

186

computer representation of the knowledge contain ed in a number

of books on chess endgame theory (Averbakh 1958, Fine 1941). This

knowledge is stored as a decision tree, the nodes are predicates for recognising

"good" board patterns and the leaves are action schemes. A similarity can be

seen here with the advice-taker chess program of Zobrist but the patterns are

combined to form a tree rather than being associated with a single integer

weight. A path down the binary tree is determined by a particular board

situation, at each node the result of applying the associated .predicate will

select one of two paths corresponding to succeeding or failing to match the

"pattern". The action schemes specify what is to be done in each particular

board situation.

More exactly there is a board of 64 squares, each referenced by two co-

ordinates, the first specifies the file, lettered from A to H, left to right, and the

second the rank, numbered from 1 to 8, bottom to top. There is a white king, a

white pawn and a black king on the board, and the white pawn always moves

upwards. White wins if the pawn reaches the eighth rank and is not captured

immediately. A game is also terminated by a draw, either because the black

king takes the pawn or a stalemate situation occurs. A position is defined by

the board configuration (the co-ordinates of the three pieces) together with the

information about who is on the move.

A position defines a situation which is either intermediate or terminal if

the one on the move is stalemate or black has captured the pawn or the pawn

has been successfully promoted. A game may also be terminated by either side

resigning or by mutual agreement. A game may be started in any legal chess

board configuration by mutual agreement when all three pieces are on the

board.

187

Let S be the set of situations. A (unary) predicate P is a

partial function from S to true or false. Every predicate defines a subset of S,

namely the inverse image of true. An action scheme is a partial function from S

to S. Every action scheme defines, for each situation in its domain, a legal

move applicable to the situation.

If A, A1, A2 are variables for action schemes and P, P1 P2 for

predicates then:

A ::= <elementary action scheme>

 if P then Al else A2 close

<elementary action scheme> ::= PAWNSTEP PAWNJUMP. MOVE2

 WGOPAWN BGOPAWN LETPASS

 RUN SUPPORT MANOEUVI

 MANOEUV2 MANOEUV3 MANOEU4

 MANOEUV5 NOP

P ::= <elementary predicate>

 not PI

 P1 and P2

 P1 or P2

 if P then P1 else P2 close

<elementary predicate> ::= ADVANCE CAPTURE SELFBLK

 MATCH1 MATCH2 WSTALEM

 BSTALEM DOMINANT CANRUN

 BKAHEAD NEEDSUP WSEE

 BSEE LOOKAHD

The two kings, one pawn chess-endgame program is constructed from

the above predicates and action schemes. The way they are put together

represents the programs knowledge of playing chess. They are put together in

sentences of the form:

<advice sentence> ::= dummy

<val, A>

if P then <advice sentence>

 else <advice sentence> close

where dummy is a do-nothing sentence, <val, A> is an ordered pair

with val=WHITEWIN, DRAW or EVALUATE. If val is EVALUATE then the value of

188

the situation is obtained by executing A and searching further

through the game tree.

The knowledge structure can be seen as a binary decision tree with

non-terminal nodes corresponding to predicates and terminal nodes to pair-

wise disjoint subsets of S.

The action schemes and predicates listed above were extracted by Tan

from chess literature on the endgame, they are the building blocks of the

program and it is profitable to consider how some of them arose.

The predicates relate to the position or relative positions of the pieces.

Some of these are fundamental, for example ADVANCE is true if and only if the

pawn can advance one square without being taken, CAPTURE is true if and only

if the pawn can be captured immediately and SELFBLK is true if and only if the

white king is on the same file as and immediately in front of the pawn.

MATCH1 and MATCH2 are true if the pattern specified occurs some

where on the board. Each takes two sets of co-ordinates relative to the pawn.

MATCHI is true if the two kings are at the specified co ordinates, MATCH2 is

true in this case and also if the left-right inverse of the co-ordinates matches.

For example, if the configuration:

WK

WP BK

occurs anywhere on the board then MATCH1 (1, 3, 3, 1) and MATCH2

(1, 3, -3, 1) will both be true.

189

There are three other general predicates, WSTALEM and

BSTALEM are true if the specified colour cannot make a legal move, and

BKAHEAD is true if the black king is ahead of the pawn.

The other predicates relate more specifically to the one pawn ending.

The concepts of critical or key squares and the "rule of the square" are stressed

in the chess literature as being important in the endgame and these concepts

are implemented by the predicates DOMINANT and CANRUN.

The following section of stylised program gives some idea of how the

program is constructed by Tan in the programming language POP-2:

if colour(machine)=white then

 if rank (whitepawn)=7 then

 if advance then <WHITEWIN, PAWN1>

 elseif rookpawn then

 if selfblk then

 if wstalem then <DRAW, NOP>

 else <WHITEWIN, LETPASS> close

 else <DRAW, WGOPAWN> close

 else

 if wtry(-1,O,1,O) or wtry (-1,-1,0,1) then

 else if selfblk then <WHITEWIN, LETPAS>

 else <DRAW, WGOPAWN> close

 close

 close

 close

else ...

This is clearer if drawn as a tree:

190

3.3 PIDGIN and the Endgame

EIKASIA is a particular, integrated extension of PIDGIN that is it is a

PIDGIN system incorporating numerous concepts, rules, thoughts, beliefs and

dictionary entries concerned with a particular problem. It is integrated in the

sense that the extension is a complete solution to the problem. However, this

does not mean that it is the best solution to the problem. By further dialogue

with users the solution might be improved or extended to cope with a wider

range of problems. EIKASIA as described here is only the design of a PIDGIN

based one pawn chess-endgame system because of the limited nature of the

PIDGIN implementation. Also it is not intended to be a practical chess endgame

system in that it will not necessarily beat or play as quickly as a program

designed specifically for the purpose. However, chess was not the motive for its

development. It will have served its purpose if it shows that PIDGIN is capable

of solving problems as complex as the one pawn endgame without losing its

flexibility.

Having completed the initial design it seems that the problem chosen

might not be the most suitable because the solution is so clearly and efficiently

191

demonstrated by the program of S. Tan. It might have been better

to have chosen an ill-defined problem and demonstrated how PIDGIN can be

used as a conversational aid to the gradual development of the solution

because this is really what PIDGIN was designed for. Nevertheless it is hoped

that while reading the following description of EIKASIA the way in which the

system could have been gradually developed will be borne in mind.

3.3.A PIDGIN Particular Extensions

The extension required to the initial PIDGIN system in order to

construct a chess endgame system can be divided into four parts:

i) Chess concepts: The pieces, board and other objects, relations

and attributes.

ii) Board states: The rules and thoughts required to recognise board

patterns of significance in the endgame.

iii) Board actions: The legal moves, the good and bad moves plus

their enabling states and the states they produce.

iv) Positive and negative states: The final states, suggestions for

positive and negative play, and positive and negative board-pattern

recognisers.

3.3A1. Chess Concepts

EIKASIA manipulates a black king, white king, and a white pawn which

may be in a box or anywhere on an 8x8 board of 64 squares. The view is

initially a 2x2 grid with the structure:

192

OPPONENT SPECTATOR

BOARD BOX

This can be set up by the following PIDGIN:

ALL PLAYER <SUB A PERSON>.

ALL OPPONENT <SUB A PLAYER>.

ALL SPECTATOR <SUB A PERSON>.

ALL BOARD <SUB AN OBJECT>.

ALL BOX <SUB AN OBJECT>

The view can be set up by the command:

SELF TRANSMIT * <<OPPONENT SPECTATOR>

<BOARD BOX>> HERE VIEW

However, when a game is being played the view is changed to an 8x8

grid representing the chess board. This is defined as:

ALL SQUARE <SUB A PLACE>.

NEWBOARD <SUB A BOARD>.

A1 <SUB A SQUARE>. A2 <SUB A SQUARE>.

... H8 <SUB A SQUARE>.

$ <<A8 B8 ... H8> <A7. ... H7> ...

 <A1 ... H1>> :NEWBOARD.

LASTRANK <SUB A PLACE>.

$ <A8 B8 C8 D8 E8 F8 G8 H8> :LASTRANK.

In a normal chess game NEWBOARD would contain all the pieces laid

out correctly but in this endgame they can be set up anywhere therefore the

board is initially empty, and the pieces are in the BOX.

ALL PIECE <SUB AN OBJECT>.

ALL KING <SUB A PIECE>.

ALL PAWN <SUB A PIECE>.

BKING <SUB A [BLACK] PIECE>

WKING <SUB A [WHITE] PIECE>.

WPAWN <SUB A [WHITE] PAWN>.

BOX <CONT WPAWN>.

193

BOX <CONT WKING>.

BOX <CONT BKING>.

The system keeps track of the entities in the view and a change of

location of anyone is automatically recorded by a corresponding change to the

view. This is the internal mechanism that simulates a change of location being

performed by an "arm" and picked up by a camera.

3.3A2. Board States

S. Tan has fourteen elementary predicates over board positions. These

can be incorporated in EIKASIA by defining the relevant states in terms of the

positions of the pieces or by appropriate patterns. For example, Tan defines the

predicate ADVANCE as:

i) function advance s; vars x y;

 wk(s(5),s(6)+1)->x;

 dbk(s(5),s(6)+1)->y;

 if x=0 or y=0 then false

 e1seif y=1 and x > 1 then false

 else true

 close

end

In English this is, the pawn may advance if the square above it is not

occupied and the black king is more than one square away from it or the white

king protects (is next to) it. In PIDGIN this becomes:

[ADVANCE] WPAWN IF

 A SQUARE <ABOVE WPAWN><CONT NO PIECE>

 AND BKING <FAR THE SQUARE>

 OR WKING <NEAR THE SQUARE>.

This definition will automatically fail if the pawn is not on the board or is

on rank eight. The following examples illustrate other techniques:

ii) function capture s;

 comment true iff white pawn can be captured immediately

 if dbk(s(5),s(6))=1 and dwk(s(5),s(6))>1

194

 then true else false close

end

A PIECE <CAPTURE A PIECE2>IF

SELF DO <A PLAYER TRANSFER THE PIECE A SQUARE THE PIECE2>

AND SELF DO <A PLAYER2 [NOT] TRANSFER A PIECE1 A SQUARE3

 THE PIECE>.

During a game a piece can only be transferred to another square by a

legal chess move. The chess moves are defined by means of enabling

conditions (see next page). Note that a piece can be treated as a place when it

is actually the square occupied by the piece that is being referred to. This is

possible because the pieces are in the view and can be found by searching.

iii) function selfblk s;

 comment true iff white king blocks the white pawn;

 if s(1)=s(5) and s(2)=s(6)+1 then true

 else false close

end

[SELFBLK] WPAWN IF

 WKING <ABOVE WPAWN><COL WPAWN><NEAR WPAWN>.

iv) function match1 a b c d;

 if s(1)=s(5)+a and s(2)=s(6)+b and

 s(3)=s(5)+c and s(4)=s(6)+d then true

 else false close

end

This matching ability is already built into PIDGIN for examp1e:

SELF IDENTIFY *<<WKING><A SQUARE1><WPAWN A SQUARE2

 BKING>>.

will match:

WKING

WPAWN BKING

195

3.3A 3 Board Actions

The pieces are moved by the TRANSFER act, the actions of which are

automatically reflected in the view by the system. If the view does not contain

the piece transferred or the action is not enabled then the command will fail.

The following requirements must be met:

i) when a game is not in progress any move is allowed;

ii) during a game moving a piece onto a square that is already

occupied causes the piece that was there to be moved to the box;

iii) the moves of the pawn and king must be defined by the correct

enabling conditions to reflect the rules of chess.

This can be done by the following PIDGIN ,statements:

A GAME [STOP] ENABLE

 A PERSON TRANSFER A PIECE A PLACE A PLACE2

A PERSON TRANSFER A PIECE A PLACE

 A SQUARE <CONT A PIECE2>

 PRODUCE THE PIECE2 <LOC BOX>.

A [COLOUR] PLAYER [CAN] TRANSFER A [COLOUR] PAWN

 A SQUARE A SQUARE2 <COL THE SQUARE>

 <NEAR THE SQUARE>

 <CONT NO PIECE>.

A [COLOUR] PLAYER [CAN] TRANSFER A [COLOUR] PAWN

 A SQUARE A SQUARE2 <ABOVE THE SQUARE>

 <NEAR THE SQUARE>

 <NOTCOL THE SQUARE>

 <CONT A [COLOUR2] PIECE>.

A [COLOUR] PLAYER [CAN] TRANSFER A [COLOUR] KING

 A SQUARE A SQUARE2 <NEAR THE SQUARE>

 <CONT NO [COLOUR] PIECE>.

196

3.3M Game Playing

The knowledge contained in the program written by S. Tan can be

divided into two parts, that within the statements making up the program and

that implied by the ordering of the statements. The rules of PIDGIN are the

equivalent of the statements of the program. Each rule independently

recognises a particular situation and enables an action which produces a state

suggesting either a win or a draw. S. Tan suggests that the strength of an

experienced player is related to the organisational structure of his chess

knowledge. This organisation could be built into PIDGIN by the construction of

large IF-rules and it is this type of structure that would be built up if PIDGIN

were told exactly what to do in each situation. This is the type of knowledge in

S. Tan's program but it is not the type used to teach chess (for example, it is

not the type found in chess books). Teaching chess usually consists of

presenting a number of guides and rules and then leaving it up to the person

learning to discover the way in which they must be combined together. This is

usually done by playing chess and learning from experience.

One of the features of PIDGIN is the ability to develop the system by

adding new rules and revising old ones. This implies a loose organisation of the

rules and it would seem that the more rigid the organisation the more the user,

or teacher, must be aware of it. At one extreme each rule is independent and

the user may freely change or add a rule without being aware of the others. At

the other extreme the complete system is one rule and to change any part the

user must be aware of all the other parts. One extreme corresponds to

PIDGIN's conversational but inefficient way of working and the other to S. Tan's

program.

197

A compromise between the two extremes is possible if

PIDGIN can be made to organise its own rules. For example, it could maintain

the order it was told the rules and try the oldest and most detailed first, re-

ordering them at each move in a way which would reduce the time it would

take to repeat that move analysis. This would produce a simple linear ordering.

As a next step it could build up a tree structure by searching for common sub-

rules. For example, if two rules were:

[RULE1 RULE 2 RULE 3 RULE4]

[RULE1 RULE 2 RULE5]

then it could construct:

[[RULE1 RULE2] (RULE5 [RULE3 RULE4])]

Where square brackets form conjunctions and round brackets

disjunctions (see Section 2~1.1). Note, that the new disjunction is unordered

and so will automatically be ordered by the ABC processor in a way that will

result in the one that has succeeded most often in the past being evaluated

first. The other advantage of this restructuring is that common sub-rules are

only evaluated once, though this could also be achieved by an alternative

scheme in which the result of evaluating a rule was remembered and used

whenever the rule was called with the same arguments or until the memory

was altered.

The advantage of an organising algorithm is that the user can deal with

the system at the level of the single simple rule yet the system is not thereby

made unnecessarily inefficient. The above scheme has not been worked out in

detail but it is suggested as the best way of extending PIDGIN to take

advantage of the efficiency that results from organising the knowledge base.

198

S. Tan's program will find a move given any board

configuration without needing to formulate an overall strategy or produce a

detailed plan. This means that in PIDGIN no scheming (strategy) and little

planning are required, for each configuration the rules simply give the move to

make. However, with more complex chess problems it is likely that a great deal

of effort would be put into producing and comparing different schemes and into

constructing various plans for achieving the states outlined in those schemes.

For example, some schemes might be:

Control centre,

Develop pieces

Make open file, Double-up rooks

Find passed pawns, Queen

One disadvantage of not having such schemes with their associated

plans is that "how" (planning) and "why" (scheming) questions cannot be

answered. Without a scheme the only reply to a "why" question is "In order to

win" (or draw) and consequently "how" questions are also reduced to either

simply the last move made or the complete sequence of predicated actions

leading to the win (or draw).

If schemes are produced they are likely to remain valid for a number of

moves but plans are rendered invalid as soon as the opponent does not make

the predicted reply. This typically means that a continual replanning is

necessary and so it would be desirable to find some way of reducing this

overhead. One way is to produce a structured plan that contains the best reply

to a number of the opponent's possible replies. Whether the extra time required

to produce this more complex plan would be offset by the subsequent saving in

199

time at future moves depends, among other things, on how well the

program can predict the opponent's moves. It would, for example, be very

difficult if the opponent was aware of the programs attempt to do this. It is

interesting to note that most chess programs carry no information from move

to move and analyse each position afresh. This is because it has been found

that the time required to check if the information carried forward is still

relevant in the light of the opponents reply is about equal to the time required

to re-analyse the position. This conflicts with the fact that people generally

require longer to make a move if they have not seen the position before than if

it is one that occurs during a game they are playing. This suggests that people

do carry information forward and adds weight to the attempts to do likewise,

for example, in the form of PIDGIN schemes. Another way of improving the

efficiency of the system would be to remember past positions and the

associated move made. Then if a similar position were to re-occur the same

move could be used without needing to analyse the position. The problem is

that it is useless to try to remember all positions as there are so many that the

time to access anyone would soon exceed the analysis time. This problem

would be solved if the system could save just the essentials of the position,

however, this amounts to the system learning to play chess because whether

two positions are similar depends on all the rules of chess. A program for

detecting similar positions would be equivalent to the analysis rules

themselves, and a program that extracted the essential features of a position

would be one that was generating a chess playing program. All these

techniques therefore, although interesting in their own right, are not useful

ways of improving the efficiency of PIDGIN.

Appendix IIC gives some details of the PIDGIN statements required to

set up EIKASIA.

200

3.3B A Typical Endgame

This division goes through the analysis of a complete endgame. The

starting position and analysis are taken from S. Tan (1972) but the description

is given in terms of PIDGIN. The starting position is:

8 WK

7

6

5

4

3 BK WP

2

1

 A B C D E F G H

 White to move

In this position there are a number of attributes that are true and a

number that are false. The attribute CANRUN is false (see Appendix IIC)

because the black king is just inside the "promotion square" of the white pawn

but the white king is also in the promotion square (NEEDSUP is false) and not

blocking the pawn (SELFBLK is false) therefore the pawn is moved forward

(PAWNSTEP). The only applicable attribute that is true is ROOKPAWN but as

this is the simplest condition the others must be checked first, for example, if

the conditions with their corresponding actions are:

[ROOKPAWN SELFBLK] LETPASS

[ROOKPAWN BKAHEAD] SUPPORT

ROOKPAWN PAWNSTEP

then obviously the more specific conditions must be checked first

otherwise they would never be checked.

201

Black's best move is to try to reach the pawn and hope that

white makes a mistake, therefore black moves to D4. The above analysis holds

for the new position and results in a similar two moves, this is repeated once

more leaving the following position:

F G H

 WK 8

 7

BK WP 6

White now has only two possible legal moves, one leads to a win and

the other to stalemate. The winning move is found by a pattern match which

matches the above position (or its inverse) and results in the king moving to

G8.

The ADVANCE attribute is now true and this results in the white pawn

being moved one square forward on each move, so whatever move black

makes the game ends in two moves (the game ending when the pawn reaches

rank 8).

202

CHAPTER 4 THE TRANSLATION OFA .SUBSET OF

ENGLISH

4.1 Introduction

PIDGIN is a language in which a subset of English can be

unambiguously represented. This chapter is concerned with the disambiguation

of sentences in that subset of English by describing the equivalent PIDGIN

statements. Question-answering systems differ greatly in the way they handle

the analysis problem. Some, such as Colby's interviewing program (Colby

1969b), look for key phrases without attempting a detailed analysis. On the

other hand Winograd's system carries out a detailed analysis of each sentence,

using a special programming language called PROGRAMMAR for the purpose.

Winograd's analysis program is based on M.A.K. Halliday's systemic grammar

and it uses context and semantic information and the powerful deductive

facilities of PLANNER to generate a parse tree for any sentence given to it.

Another program then translates this parse tree into a PLANNER program

whose action is equivalent to the meaning of the sentence. A disadvantage of

this approach is that the syntax of PLANNER was not designed to represent the

meaning of natural language sentences. It was designed as a theorem-proving

language to enable people to write computer programs to solve certain classes

of problem more easily. Schank shows that by designing a suitable

representation language the problem of analysis is simplified because it

becomes driven by the structure of that language. Because the syntax of

PIDGIN is equivalent to Schank's representation language the ability to

translate English into PIDGIN is guaranteed by the translator described by

Schank. This chapter to some extent describes Schank's translation scheme

applied to PIDGIN. However, a number of changes have been made in order to

203

take advantage of the features of PIDGIN that simplify translation.

For example, the effect of context on translation, the resolution of cross-

references, the generation of answers, the format of the dictionary, the

suspension and re-activation of analysis and the fact that PIDGIN is

implemented in ABL all simplify translation because of their special form in

PIDGIN.

None of the ideas presented here have been implemented because of

the equivalent translator described and implemented by Schank. This chapter

describes both a PIDGIN version of Schank's translator and a number of more

general points concerning the nature of the particular subset of English that can

be handled by PIDGIN. The chapter is divided into a description of the analysis

of a subset of English into PIDGIN, a description of the synthesis of PIDGIN

back into English and a brief discussion of how these might be combined in a

working system.

204

4.2 The Analysis of English

4.2.1 The Analysis Process

The data paths of the system are shown in the following

diagram:

It can be seen that the translation of English into PIDGIN takes place in

three steps internalisation, explication, and analysis. These three steps each

perform one stage of the translation. lnternalisation works at the character

level and produces words in the surface-structure buffer. Explication works at

the word level and produces items in the shallow-structure buffer. Analysis

205

performs the major job of translating the standardised English

items into PIDGIN.

4.2.1A Internalisation

This is the process of translating a sequence of characters, typed by the

user, into a sequence of words. It becomes clear in the section on conversation

(Section 4.4) that this translation cannot take place in isolation because of the

possibility of typing errors and abbreviations. To cope with this it must combine

with explication to ensure that the division into words takes place at the correct

point. Apart from the practical problem of typing errors and spaces being

omitted the interna1isation can take place at the character level. A word is a

sequence of letters, a number is a sequence of digits (possibly with a decimal

point) and other characters are treated as separate symbols. One practical

problem is the detection of the end of the user's input. It might be terminated

by the end of the line or the sentence might be run over more than one line or

there may be more than one sentence on a line terminated by full-stops,

question-marks or exclamation marks. One simple solution is to insist that all

sentences are terminated in some standard way (symbol or end of line with the

option of continuing over more than one line by the use of a continuation

symbol). A better solution would be to do all analysis strictly from left to right

word by word then if the end of the line was reached and the analyser had no

outstanding syntax structures to be completed the input would terminate

otherwise another line would be read, this could be combined with the ability to

terminate by symbol if desired. The fact that people find trouble with this

problem especially when communicating using a terminal indicates that no ideal

solution exists. The output from interna1isation is a sequence of words,

numbers, where numbers have been translated into the appropriate internal

machine representation, and symbols, where the character has been translated

206

into a word {for example, "." into DOT, "?" into QUERY and so on).

Spaces are ignored.

4.2.1B Explication

This is the second stage of the translation process. Words are

translated into a form that can be handled more easily by analysis. For

example, affixes are removed and translated into separate qualifying items and

idioms are replaced by the equivalent standard phrase. The result is a sequence

of items all of which appear in the systems dictionary and which are loosely

joined into structures (for example, word plus affix structure or quoted text

structure).

a. Affixes

If a word does not occur in the dictionary a check is made to see if it is

possible to remove affixes to produce a sequence of items that appear in the

dictionary.

It is useful to distinguish a unit lower than the word in English

grammar, it is called the morpheme. It arises through considering the structure

of words, for example, many words occur on their own and with certain endings

in particular contexts, for example, hunt, hunts, hunted, hunting and hunter. A

morpheme that may be used as a word is called a free morpheme and the

others bound morphemes, and the obligatory part of a word is called the base

morpheme. In general the base morpheme is a free morpheme though such

words as detain, contain and deceive, conceive may best be analysed as two

bound morphemes.

207

Two types of bound morpheme can be distinguished,

inflexional, which may only occur once in a word and always occur last, and

derivational which do not form into sets and may occur more than once. For

example, novel+ist+s consists of free base morpheme+bound derivational

morpheme+bound inflexional morpheme. The items in PIDGIN correspond

roughly with the morphemes of English grammar. The two types will now be

considered:

i) Derivational. In general in PIDGIN derivational items are checked

for if the word is not in the dictionary but if they are found they are

removed and ignored.

Examples are: -ISH, -IST, -ISE.

ii) Inflexional. These form sets corresponding to the word classes of

verb, noun and adjective.

Noun inflexional. Only "s" is checked for, if present it is made a

separate item. Other plural forms are handled by the idiom facility.

Adjective inflexional. The comparative and superlative postfixes (-ER

and -EST) are checked for and if present MORE or MOST is inserted

before the adjective and the affix removed.

Verb inflexional. The endings -S, -ED, -ING and -EN are checked for

and if present are separated. Irregular verb forms are handled by the

idiom facility.

208

b. Idioms

It is possible for the user to define idioms, that is to specify one or

more items to replace one or more input words. This facility can be used to cut

down the number of dictionary entries required. The primitive IDIOM is used to

extend the idiom dictionary, for example:

$ <IDIOM [APOSTROPHE S] POSSESSIVE>.

$ <IDIOM [S APOSTROPHE] POSSESSIVE>.

$ <IDIOM BEST [MOST GOOD]>.

$ <IDIOM MEN [MAN S]>.

$ <IDIOM FEET [FOOT S]>.

$ <IDIOM ATE [EAT ED]>.

4.2.1C Analysis

Analysis proceeds at two levels, the sentential and the conceptual. At

the sentential level the Analyser uses a number of language dependent

heuristics to look for the main nouns and verbs. It then brackets the dependent

words with their governor using agreement rules based on word endings and

function words. Thorne (1968) has shown that it is possible to do substantial

syntax analysis without any information about "open class" words (nouns,

adjectives and verbs). The sentential level analysis is carried out on the shallow

structure of items constructed by explication. At the conceptual level the

system is restricted by the syntax of PIDGIN as to the possible deep structure it

can create. It is also limited by the memory as to the possible combinations of

concepts allowed. Unless the user has a priority of 100 the system will not allow

any combination of concepts unless some combination already in the memory

can be substituted for it. Thus the conceptual level allows a top-down approach

to the analysis because it knows what structures are possible, while the

209

sentential level suggests a bottom-up approach because it is faced

with the actual input sentence. The two levels are linked through a special

memory known as the dictionary. The dictionary specifies the conceptual

structure associated with each syntactic structure. Entries can be added to the

dictionary by the primitive DICT. Each entry has the form:

DICT item type structure

where "item" is the shallow structure item, "type" is the syntax class

and "structure" is the associated conceptual structure.

Possible syntax types that may be specified are:

INTRANSITIVE no sentential object, e.g. sleep, die.

TRANSITIVE a direct object, e.g. hit, like, wants.

INDIRECT no direct object, but a possible indirect object, e.g. go.

PSEUDO direct object to be treated conceptually as the actor in a

relation of the form: X DO ... CAUSE Y ACT ... where X is the sentential

subject and Y the sentential object, e.g. break, grow, open.

TRANSFER two objects with no preposition in front of them, in which

case the first is recipient, the second the object, or in reverse order

separated by "to", e.g. give, buy, sell.

DOUBLE two subjects and no sentential direct object, or an ordinary

transitive verb followed by "with", e.g. fight, communicate.

210

STATE "that" following the verb or a noun-verb combination

as object, possibly separated by "to", e.g. think, see, allow.

DETERMINER followed by a possibly qualified noun, e.g. the, some,

this.

ADJECTIVE followed by a possibly qualified noun, e.g. red, tall, happy.

NOUN possibly preceded or followed by qualifying nouns, e.g. boy,

John, we.

PREPOSITION followed by a noun group, e.g. with, to, on.

QUESTOR introduces a question, e.g. what, how, which.

CONJUNCTION includes special syntax checks for "and" and "or"

constructions, e.g. but, since, although.

AFFIX special cases, e.g. plural "s", possessive.

ADVERB complex rules for position, e.g. slowly, almost, still.

Appendix II gives some examples of dictionary entries.

The sentential syntax analyser makes use of routines associated with

the word types together with a set of built-in rules specifying the order in which

the word types occur in English. This information is used to guide the Analyser

when it looks through the sentence for concepts to insert into the conceptions it

is building up.

The Analyser thus proceeds as follows:

211

i) Surface level heuristics (word endings, function words

and so on) are used to find the main verb, and subject.

ii) The main verb is used to extract a model conception(s) from the

dictionary.

iii) The model conception is used to guide the system in what to look

for; the sentential order rules tell the analyser where to look first,

where to look if that fails and so on.

iv) Each word in the sentence gives rise to some piece of deep

structure that must be fitted into the statement being constructed

according to the restrictions imposed by the conceptual knowledge.

v) As the analysis proceeds the memory and deductive facilities are

used to resolve questions of ambiguity and consistency.

vi) The completed statement is moved to the thought processor with

an indication as to whether the sentence was a question, command or

assertion.

vii) The processor checks the statement with memory for consistency

and then it takes the appropriate action (adds it to the memory, obeys

the command or answers the question).

4.2.2. Word Analysis

The last section discussed the complete analysis process from the point

of view of the implementation of the translator. This was not covered in any

detail as it has been described by Schank else where. However, the more

general consideration of the adequacy of PIDGIN for representing a large

212

subset of English must be discussed. Although it follows, to some

degree, from the adequacy of Schank's notation Schank does not discuss this in

detail. The following discussion compares the capabilities of the PIDGIN deep

structure with the requirements of the English language, mainly as described by

Quine (1960). This is done by taking English constructions and considering the

equivalent PIDGIN structure. This is not done from the point of view of the

oddities of English syntax but by considering some of the main semantic

features. First at the word level and then, in the next section, at the sentence

level. The vaguer and more difficult features that arise beyond the sentence

level are discussed in Section 4.4.

4.2.2A Divided Reference

The dichotomy between singular and general terms has been

considered important throughout the history of the philosophy of language. A

singular term names or purports to name one object while a general term is

true of a number of objects. There is a third category which acts in some ways

like singular and in some ways like general terms, these are the mass terms.

4.2.2A1 Mass Terms

Mass terms, such as "red" and "water" are best regarded as terms

which do not engage in the sophistication of divided reference. In this sense

they can be regarded as the remnants of our childhood use of terms (for

example, "Mama", "Dada"). Grammatically mass terms are like singular terms

in resisting pluralization and articles. Semantically they are like singular terms

in not dividing their references but they do not name a unique object each. In

PIDGIN it must be decided whether to represent mass terms by entity concepts

213

and thus regard them as referring to one scattered object or by

group concepts and thus regard them as referring to various shaped and sized

portions of the object stuff. The later alternative is chosen (although it conflicts

with the way Quine chooses to treat mass terms) because it enables the

various uses of mass terms to be more easily handled in PIDGIN. The problem

of exactly what size a single portion of, say, water or red is, is not defined, it is

simply what people choose to make it from occasion to occasion. By their use of

the demonstrative people do choose to talk about certain sized portions of stuff

named by mass terms, for example:

This water is unfit to drink.

That red is a shade too dark.

The following examples illustrate the way mass terms are handled in

PIDGIN by group concepts:

Water is a liquid. ALL WATER <SUB A LIQUID>.

Red is a colour. ALL RED <SUB A COLOUR>.

This red is suitable. A [SUITABLE] RED.

The water is lovely. A [LOVELY] WATER.

The decision to treat mass terms as group concepts allows, for

example, "the water in this glass is a liquid" to be deduced from the first

example above but prevents "water is unfit to drink" from being deduced from

"this water is unfit to drink". There are many other examples:-

Most water is now polluted.

<MORE <DIV ALL 2>> WATER <CONT POLLUTANT>.

Some footwear has doubled in price.

=N POUND <PRICE SOME FOOTWEAR>

 BECOME <MULT N 2> SELF.

Lamb is expensive meat.

ALL LAMB <SUB A MEAT< COST

 <MORE =N PENCE <<PRICE MEAN> ALL MEAT>> PENCE>>.

214

4.2.2A2 General Terms

a. Absolute General Terms

Absolute general terms admit the definite and indefinite article and the

plural ending. The plural form is handled by the quantifier <MORE 1> unless

the quantity is stated more explicitly. The indefinite is handled by the quantifier

<EQUAL 1>.

The definite article is used with a general term in order to describe a

single object, rather than to name it as a singular term does. Whenever the

definite article is used PIDGIN attempts to replace the description by a singular

term with the same reference; this is usually known from the context otherwise

the definite article would not have been used. However, there are cases where

it is used when the object is only potentially knowable, for example, "the oldest

man in England", "the winner will receive £10". In these cases PIDGIN

automatically creates a new concept which refers to the individual described

and the descriptive information is used to define it. For example, "the oldest

man" would produce:

XYZ <SUB A MAN>.

XYZ <AGE =N YEAR <<OLD MAX> ALL MAN>>.

Many general terms also double as mass terms, for example "Mary had

a little lamb" is ambiguous because "lamb" may refer to a single infant sheep or

to a part of that single, scattered object consisting of lamb meat. The two views

can be resolved by introducing a concept, such as MEAT, when the PIDGIN

equivalent of the two meanings becomes:

MARY TRANSFER SOME MEAT <PART SOME LAMB>

 A PLACE MOUTH.

MARY <POSS LAMB <WEIGHS <LESS =N KILO

215

 <<WEIGHT MEAN> ALL LAMB>> KILO>>.

The central feature of a general term, that of dividing its reference

forms the basis of what in PIDGIN is equivalent to the idea of a variable in

many computer programming languages. For example, the general term "man"

divides its reference among all male homo-sapiens.

The equivalent PIDGIN concept MAN divides its reference (in the

PIDGIN sense of the word, see Section 2.1.1) in an analogous way. At any

moment the PIDGIN concept may have as its reference some single example of

an individual man or class of men. This corresponds to the ability to say "the

man" to refer to the one man that is being talked about. Thus the PIDGIN

group concept MAN may have as its reference any of the entity concepts JOHN,

BILL or JOE and so on, which have been stated as being entity concepts for

which MAN may be substituted. It may also have as its reference any of the

group concepts, say FATHER, BACHELOR or UNCLE that have been stated as

being group concepts for which MAN may be substituted.

b. Relative General Terms

A relative general term is true of one thing with respect to another, for

example "part of", "bigger than", and "brother of". In PIDGIN these are

translated into a structure with the form A <R B> where A and B are the things

related by R. Relative terms can be paired off into mutual inverses so that if R1

is the inverse of R2 then A <R1 B> says the same thing as B <R2 A>. For

example:

WEIGHS <INVERSE WEIGHT> .

 JOHN <WEIGHS 60 KILO>.

 60 KILO <WEIGHT JOHN>.

BELONG <INVERSE POSS>.

 JOHN <POSS FIDO>.

 FIDO <BELONG JOHN>.

216

OLD <INVERSE AGE>.

 A PERSON <AGE 20 YEAR>.

 20 YEAR <OLD A PERSON>.

The relation of a relative term is sometimes used derelativised in

English as an absolute term true of anything x if and only if the relative term is

true of x with respect to at least one thing. Thus "part", "brother" and

"container". In PIDGIN a relation can be used as a nominal if it is being talked

about as a relation (as in the: first line of each example above), but in the

usual case of a derelativised term it will be expanded into the relation and two

general concepts of the correct category, for example:

brother

A MAN <BROTHER A PERSON>.

part

AN OBJECT1 <PART AN OBJECT2>.

Composite absolute general terms can be constructed from a relative

and a singular term, for example:

a brother of John

 A MAN <BROTHER JOHN>.

a broken part of machinery

 A [BROKEN] OBJECT <PART A MACHINE>.

c. Relative Clauses

A relative clause is usually an absolute term and is formed by

substituting a relative pronoun such as "which", "who", "whom" or "that" for a

singular term in what would otherwise be a complete sentence. It is true of just

those things which would yield a true sentence if put in place of the relative

pronoun. Relative clauses are adjectival but in PIDGIN they are translated into

separate conceptions just as they are if used as unrestrictive clauses which are

217

stylistic variants of co-ordinate sentences anyway. In many

translation schemes the regimentation of relative clauses into "such that"

clauses is suggest ed and this can be regarded as forming the first part of the

conception split. For example:

A car which John bought is in the garage.

becomes:

A car such that John bought it is in the garage.

which in PIDGIN is:

A PERSON PASS A CAR SELF JOHN

 AND THE CAR <IN GARAGE>.

4.2.2A3 Singular Terms

A singular term admits only the singular grammatical form and no

article and it names or purports to name a single object. In PIDGIN they

become entity concepts.

The problem of ambiguity of singular terms, for example the fact that

the word "John" refers to millions of people, is not a deep problem, merely a

question of resolving the ambiguity and careful distinction between the English

name "John" and the internal concept JOHN so that multiple uses of "John" are

distinguished internally, say JOHN1 JOHN2 and so on, or any equivalent scheme.

Singular terms can be obtained from general terms by the use of the

demonstrative particles "this" and "that". By this means single objects can be

specified without the need for naming .though, as was pointed out in the last

part, PIDGIN .does carry out an automatic internal naming process. This is

218

done so that extended discourse about a demonstrative singular

term can be collated under a single concept. New singular terms can be

introduced this way by using the "is" of identity, for example "This river is the

Thames".

Mass terms also generate singular terms with the demonstratives, for

example "this water", "that sugar". Thus

THISWATER <SUB A WATER>.

that is, the new concept THISWATER is identical to one part of the

single, scattered water stuff.

The reference of demonstrative singular terms varies from occasion to

occasion like the reference of the indicator words ("I", "you", "now", "here",

"today" and so on) and PIDGIN handles them in the same way, that is by

resolving the reference at translation time so that the PIDGIN deep structure

produced does not contain any such unstable singular terms.

The definite article can be regarded as a weakened demonstrative

particle used to form singular descriptions, and further the pronouns can be

regarded as short singular descriptions ("he" = "the man", "she" = "the

woman", "it" = "the thing"). In PIDGIN demonstrative singular terms, singular

descriptions and pronouns are all translated into concepts that refer uniquely

and stably to the current reference of the unstable English phrase.

Indefinite singular terms are formed from general terms with the

indefinite article, for example "I saw a lion." This is translated to A LION in

PIDGIN, that is, anyone member of the class of lions. Note the difference

between this and the translation of "the lion" as ALBERT, where ALBERT is the

particular single individual lion referred to. Also note the repeated use of the

terms and the translation:

219

John saw a lion and Bill saw a lion.

JOHN PERCEIVE A LION1 AND BILL PERCEIVE A LION2

John saw the lion and Bill saw the lion.

JOHN PERCEIVE ALBERT AND BILL PERCEIVE ALBERT.

Note the use of concept subscripts in the first example to allow the

particular lions seen to differ. It is because of this that pro nouns (always

definite) cannot simply be regarded as standing in place of (can be totally

replaced by) their antecedent, consider:

John saw a lion and Bill saw it.

JOHN PERCEIVE A LION1 AND BILL PERCEIVE A LION1.

This time the same subscript is repeated to force the lions to be the

same individual.

Indefinite singular terms can also be formed from other particles, such

as "every", "some", "each" and "any". The translation of these terms together

with pronouns and especially with negation is erratic and will not be discussed

here.

Abstract singular terms that purport to name qualities or attributes

have long been a source of confusion. Every general term can be regarded as

delivering an abstract singular term usually constructed by suffixing "-ness", "-

hood" or "-ity". In PIDGIN they are avoided where possible by reducing them to

concrete objects together with the single group of abstract objects, the

numbers. For example:

Humility is rare.

<MORE ALL [HUMBLE] PERSON> PERSON.

220

That is the number of people is more than the number of

humble people.

4.2.2A4. Composite Terms

The composition of the equivalent of singular and general terms to form

new terms is the source of all PIDGIN's concepts. This part considers the rules

that govern the composition. Composite general terms can be formed by

adjoining one general term attributively to another, thus "red house", "iron

bar". In PIDGIN if the term has been specified as ATTRIBUTE it can be used as

a qualifier:

A [RED] HOUSE.

AN [IRON] BAR.

otherwise it must be linked using a relative term. A composite general

term is true of just those things that both components are true of. If the

relationship is obscure but significant then the general relation MOD is used.

This can be read as "modified by" or "to do with", for example:

Water rat A RAT <MOD A WATER>.

Fire Hydrant A HYDRANT <MOD A FIRE>.

Steam engine AN ENGINE <MOD SOME STEAM>.

Syncategorematic adjectives, that is those that cannot stand on their

own as terms, are like adverbs in that they can be attached to terms to form

further terms. In PIDGIN they are not treated in the same depth as in English.

It is hoped that they can usually be handled in

221

PIDGIN directly (for example, adverbs of time and place

and some of manner) or paraphrased or ignored or left for future analysis (for

example, adverbs involving analogy such as "majestically"). General terms can

also be obtained by combining a relative term and a singular term ("brother of

John") as well as. by combining a relative term with a plural general term

("benefactor of refugees"). These composite general terms can be made into

singular terms using "this", "that", or "the" and these can be combined with

relative terms to form general terms again. For example: A part of the skin of a

red apple

AN OBJECT <PART A SKIN <PART A [RED] APPLE»

In PIDGIN the combining of concepts is controlled by the previous

occurrence of a similar combination. Unless the user has priority 100 a

combination will not be set up unless some combination already present in the

memory can be substituted for it. For example, if the combination:

A [PLEASURE] PERSON

has already been set up in the memory then the following combinations

will be allowed:

[HAPPY] JOHN

A [SAD] CHILD

A [JOYFUL] WOMAN

(assuming PLEASURE can be substituted for HAPPY, SAD and JOYFUL,

and PERSON for JOHN, CHILD and WOMAN). But the following will not be

allowed:

222

A [HAPPY] BOOK

A [SAD] TREE

4.2.2B Ambiguity and Vagueness

The way in which language is learnt, by a process of piece-meal

education arid induction, naturally leads to vagueness. Singular terms can be

vague as to the spacio-temporal limits of the thing named; for example "the

South Downs" specifies a particular range of hills but their precise limits are

vague. General terms can be vague as to their extension, what counts as one,

and as to the boundaries of each one. For example, "mountain" is vague as to

when a hill becomes one, and thus how many there are, and as to the

boundaries of each one. PIDGIN requires rules if such vagueness is to be

resolved. For example, if told the heights of a number of hills and mountains

and which are hills and which mountains PIDGIN will be unable to classify any

new feature simply given its height. But if a rule is set up that defines a

mountain as always being over 1000 metres and a hill as always being under

then it will be able to deduce the class of a new feature from its height.

Another group of words that vary in meaning are words such as "big -

small", "hot - cold", "high - low", "heavy - light" and so on. These words are not

really ambiguous or vague but dependent on the governed term. In this sense

they can be regarded as a type of syncategorematic adjective. In PIDGIN they

Could be handled by either making them absolute or by making them clearly

relative or by treating them as inseparable from the nominal they qualify. For

example, "heavy" and "light" could be handled by substituting the actual weight

to enable absolute comparisons to be made between say a "heavy woman" and

a "light man". However, such a translation requires a lot of knowledge about

the average and the distribution and it is extremely difficult to quantify for pairs

223

such as "smooth" and "rough". The second method is to try to place

every term on a relative rather than an absolute scale. Thus:

heavy man is heavier than heavy woman is heavier than average

man is heavier than average woman is heavier than light man is

heavier than light woman.

This method does not suffer from the disadvantage of quantification but

it does require extensive knowledge of the relation between completely

different terms if they are to be compared (for example, to judge that a heavy

mouse is in fact lighter than a light elephant). If different terms are not to be

compared then the final method can be used and PIDGIN merely needs to

know:

heavy X is heavier than average X is heavier than light X.

The method used is a variation of the last method that allows some

comparison. All such relative adjectives are related to the average, which is

regarded as the sum divided by the total number. For example:

a heavy elephant

AN ELEPHANT <WEIGHS <MORE =N KILO

 <<WEIQHT MEAN> ALL ELEPHANT>> KILO>.

a smooth skin

A SKIN <ROUGHNESS <LESS =N AMOUNT

 <<ROUGH MEAN> ALL SKIN>> AMOUNT>.

The knowledge can be made absolute by specifying the weight of the

average elephant or by specifying what amount (arbitrary) constitutes the

average skin roughness. For example:

3000 KILO<<WEIGHT MEAN> ALL ELEPHANT>.

70 KILO«WEIGHT MEAN> ALL MAN>.

would allow average (and thus heavy and light) elephants and men to

be compared. And:

224

ALL SKINWOMAN <SUB A SKIN>.

ALL SKINRHINO <SUB A SKIN>.

10 AMOUNT<<ROUGH MEAN> ALL SKINRHINO>.

1 AMOUNT<<ROUGH MEAN> ALL SKINWOMAN>.

The skin of an individual is substitutable for the appropriate skin class,

for example:

Mary has smooth skin. .

ALL SKINMARY <SUB A SKINWOMAN><BELONG MARY>

 <ROUGHNESS <LESS 1> AMOUNT>.

The problem of comparing more or less than average quantities

depends on the distribution. There are many ways of incorporating this

information, for example, specifying the standard deviation and assuming more

than average means more than the standard deviation from average. Another

method would be for the system to do a curve fit on all the information in

memory and work out the standard deviation. However, these methods are not

ideal, it requires a more detailed analysis of the interaction between the

systems knowledge of the world and facts about the world, and how this could

best be fitted into a statistical framework in which the system could perform

useful interpolations and extrapolations. Sentence truth does not usually hinge

on vagueness because people make sure it does not. For example, the height of

a mountain is not vague, but the area is, for the very reason that it is the

height that is of most interest to people when mountains are discussed. One

area that does encounter vagueness with respect to sentence truth is deciding

on records, the longest river, largest mountain and so on. On such questions

PIDGIN relies on the simple numeric comparison of the in formation it has been

given. Ambiguity is illustrated by the fact that a black feather is clearly light

and clearly not light. Vagueness is associated with the exact placing of

boundaries, ambiguity with striking divisions. Usually ambiguity is resolved by

context, either within the sentence, within the broad context of discourse, or

225

within the even broader context of social conventions and natural

inclinations. The broader the context the more knowledge required to resolve

the ambiguity and the more difficult it is for an automatic translation scheme to

incorporate and make use of the necessary knowledge. This problem has been

considered by Schank and others and is not discussed here.

The division between ambiguity and generality is usually resolved by

considerations of etymology, intuitive sense and grammatical function.

However, in a deep structure representation other considerations apply and a

term is usually regarded as ambiguous if its incorporation as a single concept in

the deep structure would require different interpretations from context to

context. Thus the word "hard" as applied to chairs and questions would usually

be regarded as generally true of both but in the deep structure two separate

concepts would be used. Ambiguity arises with composite terms where a

syncategorematic: reading is possible, for example, "a poor artist". It also

occurs with the seemingly innocuous indefinite article:

i) A lion likes red meat.

ii) A lion escaped.

which leads to examples involving the plural:

iii) I like lions.

iv) I hear lions.

v) Lions are rare.

vi) I hunt lions.

vii) I am hunting lions.

226

Examples (ii), (iv) and (v) are straight-forward, "a" means

a single unspecified thing, plural means more than one and plural in subject

position without an article refers to the class of lions, the problems associated

with these are discussed earlier. The other examples have a common thread,

they all involve dispositions. How this might be used to translate the examples

is discussed in the next section.

4.2.3 Sentence Analysis

The definition of what is and what is not a sentence will not be

attempted. Sufficient to say that a sentence translates into one or more PIDGIN

statements. Even elliptical sentences such as "Yes." or "The pawn." are

translated into complete conceptions. This section discusses those sentences

that alter the concept structure of the system and some special aspects of the

translation problem. The translation of more general sentences is relegated to

the discussion of a few examples in the next section.

4.2.3A. Predication

The basic combination of two terms at the sentence level is that of

general and singular terms in predication: <singular-term> is a <general-

term>. The sentence is true or false according as the general term is true or

false of the thing, if any, to which the singular term refers. The particular form

of a predication depends on the grammatical category of the general term. If it

is an adjective the article is omitted and if it is an intransitive verb the article

and "is" are omitted:

John is a boxer.

227

John is big.

John sings.

However, there are mechanisms in English for converting the verbal

and adjectival forms to substantival form, namely the "-er" suffix and the use

of the class name. For example, to translate the two non-standard cases above

into a standard form:

John is a big person.

John is a singer.

This enables predication to be translated into the PIDGIN deep

structure:

ALL group-concept <SUB A group-concept>.

or

entity-concept <SUB A group-concept>.

Mass terms can occur on either side of the predication. In the

predicative position normally occupied by a general term a mass term is treated

as referring to a portion of the stuff the mass term refers to ("That puddle is

water."). In the other position it is treated as referring at once to all the

scattered portions ("Water is a liquid."). Predication is the mechanism whereby

new concepts are described to the PIDGIN system. In general the new concept

occurs to the left of the SUB relation, an old concept or combination of concepts

to the right and the complete conception has a modality of DEFN (see Division

2.3D). If this process is followed back then it can be seen that every concept on

the right must have occurred in some previous definition on the left. Obviously

all concepts "are eventually reduced to some initial group of concepts, namely

those built into PIDGIN itself (see Section 2.1.1). Appendix II shows a typical

228

sequence of definitions for building up a basic set of concepts from

those built into PIDGIN.

4.2.3B Identity

Identity is also expressed in English by "is" in sentences with the form:

<Singular-term> is <singular-term>. The old philosophical dilemma - "to say of

two things that they are identical is nonsense, and to say of one thing that it is

identical with itself is to say nothing at all" (Tractatus 5.5303, Wittgenstein

1922) is resolved in PIDGIN by distinguishing between the object an individual

concept refers to and the definite description of that object in terms of other

concepts. The system may contain any number of different descriptions of the

same object each associated with a different concept. The fact that two

descriptions describe the same object

is a statement of experience not something inherent in the descriptions

themselves (for example "The evening star is the morning star"). When PIDGIN

encounters any singular description describing an object not previously

encountered then a new concept is formed and a predication is made between

the new concept and the general term corresponding to the singular

description. Thus:

The barn behind my house.

MYBARN <SUB A BARN <BEHIND MYHOUSE>>.

The barn behind your house.

YOURBARN <SUB A BARN <BEHIND YOURHOUSE>>.

The two concepts are assumed to refer to different barns. However, if

PIDGIN is told they are the same: The barn behind my house is the barn behind

your house.

MYBARN <EQUIV YOURBARN>.

229

then it will make the two entity concepts equivalent. The

result of this equivalencing will be to use only one of the concepts in the future

and to combine all the statements concerning each concept.

4.2.3C. Time

Time plays a large part in the structure of any sentence in English

because it is necessary to give every verb some tense. The complex grammar

of tenses can be greatly simplified in the deep structure by the use of explicit

time, period and interval specifiers in the modifier of the statement. These

specifiers are placed among the modifiers of the complete statement because it

is only an event that can have a time and a duration and a PIDGIN statement is

a description of an event. The temporal qualifiers "now", "then", "before t", "at

t", and "after t" are systematised by translating them onto an absolute time

scale. The time of day and the date (relative to the year 0 A.D.) are used to set

up an absolute time scale stretching into the past and future. "now" moves

along this time scale so that at each new moment it occupies a new position. A

point on the time scale is expressed as a sequence of a number of each of the

time units. Points on the scale can be associated with events and terns, "John's

birthday", "last week", "the end of the year", "Christmas". When the term

refers to a recurring event the term is kept in order to retain the ambiguity of

reference, if it refers to an absolute event the term is kept in order to retain the

description associated with the name of the event, otherwise it is translated to

an absolute time point.. The various tenses are handled by the above time

specifier, plus a period modifier to say whether it is an EVENT and if it is

whether the sentence refers to the START, WAX, CONTINUING, WANE or STOP

aspect of the event or to the complete event. If it is an EVENT then the interval

modifier can be used to state the length of time occupied by the specified phase

of the event. Other modifiers related to tense are concerned with intent and

230

conditionality. The following examples show how these modifiers

can be combined:

I am walking

 CONTINUING <TIME t2>

I walked.

 EVENT <TIME <LESS t2>>

I will walk.

 INTEND <TIME <MORE t2>>

I can walk.

 CAN <TIME t2>

I started walking yesterday.

 START <TIME t1>

I will stop walking this evening.

 STOP <TIME t1>

I will have been walking two hours.

 CONTINUING <TIME <MORE t2>><INTERVAL 2 HOUR>

where t1<t2<t3 and NOW=t2.

4.2.3D. Ambiguity

Sentence ambiguity is the central problem of machine translation. The

problem is handled in recent question-answering systems (Winograd 1971,

Schank 1970a) by writing translators that make use of the know ledge stored in

the systems data-base together with the systems deductive capabilities. An

example requiring the resolution of ambiguity is discussed in the next section.

As well as the ambiguity of terms (see Division 4.2.2B) there can be

ambiguities of grouping and scope. Grouping can best be illustrated by the use

of brackets, for example:

(boy scouts) fish.

(boy) scouts (fish).

((pretty poor) girl) guides (light torch holder)).

(pretty (poor (girl guides))) light (torch holder).

231

etc. The bracketing in each case can usually be determined

by the surrounding context plus more general knowledge. However, many

examples are simply ambiguous and cannot be bracketed in anyone way but

such examples do not often occur in conversation. Other true ambiguities are

illustrated by "big European butterfly" in which the syncategorematic adjective

"big" may include "butterfly" or "European butterfly". Such ambiguities can be

resolved only by knowing common usage or by further conversation. Indefinite

singular terms also give rise to problems of ambiguity concerned with scope,

for example: "Each thing that glisters is not gold." If the scope of "each thing"

is the whole sentence then the assertion denies that gold glisters, if the scope

does not include the negator then the assertion is true because it is then

equivalent to "it is not the case that everything that glisters is gold". Once

again the ambiguity is resolved by convention. In PIDGIN the two possible deep

structures would be:

A [GLISTER] THING <SUB A GOLD> [NOT].

ALL [GLISTER] THING <SUB A GOLD> [NOT].

Further ambiguity of scope occurs with "every" and "any" and in this

case convention rules that "every" requires the smallest scope and "any" the

largest. So:

I do not know any poem.

means

I know no poem.

but

I do not know every poem.

232

means

It is not the case that I know every poem.

4.2.3E Opacity

A purely referential position in a sentence is one in which any term

designating the same object may be substituted without altering the truth value

of the complete sentence. This is called substitutivity of identity and it is true

for most of the terms in the examples given.; The most obvious case where it

fails is with quotation, for example:

"Jekyll" has six letters.

the singular term "Hyde", although it refers to the same person, can

not be substituted without destroying the truth of the sentence. PIDGIN

handles quotation by keeping the quoted text in character form so substitution

is prevented in all circumstances.

Contexts in which substitutivity of identity may not occur without the

possibility of change of truth value are called referentially opaque, as opposed

to those in which it may occur which are called referentially transparent. It is

not necessary to discuss the problems that this subject brings with it because

of the simplicity of PIDGIN statements compared with the subtlety of English.

The following brief description shows how it is possible to handle the problem

within PIDGIN.

Many verbs are associated with the relation between minds and the

world, and with the internal models in minds. For example, "believe", "seek",

"say", "wish", "fear" and so on. These -have been recognised as requiring

special treatment with respect to the substitution of terms in the c1auses they

233

govern and they have been christened propositional attitudes. All

these propositional attitudes translate into one or other of the mental acts in

PIDGIN, COGITATE and TRANSMIT. Each of these acts takes a complete

statement as its object. If the subject of the resulting conception is the PIDGIN

system (SELF) then concepts in the object statement can be freely substituted

for any other concepts that the system knows are equivalent. This is because

the statement forms part of the system itself and can be treated like any other

part. If the subject is not the system however then it is reasonable that

assumptions should not be made about the knowledge contained in the mind of

the subject. For example: John believes Jekyll is dead.

JOHN TRANSMIT< [DEAD] JEKYLL> MEMORY SELF.

That is John can transfer the thought "Jekyll is dead" from his memory

into his consciousness. If the conception:

JEKYLL <EQUIV HYDE>.

is known to PIDGIN this does not imply that John also knows this fact

so it follows that it cannot be deduced that "John believes Hyde is dead". A

similar justification can be found for the other propositional attitudes and the

result is that the PIDGIN system has a working mechanism for deciding when a

substitution can be made.

4.2.4 Examples of Analysis

The following examples are taken from Schank (1973) but have been

modified in order to illustrate the features of PIDGIN.

234

1) "I want to go to the park with the girl."

The initial internalisation and explication has already been discussed.

The explication process look for word endings and function words in order to

discover the main subject and verb and any direct object(s). So by the time

analysis begins these sentential features have been marked. The dictionary

forms the basis of the analysis as it is this that contains the mapping from

sentential-level words to the conceptual-level concepts. In the above example

the verb "want" is found and looked up in the dictionary giving three possible

structures:

i) STATE

 A LIFE DO AN ACTION2 CAUSE A PERSON1 BECOME

 [PLEASED] SELF.

ii) TRANSITIVE

 A PERSON PASS AN OBJECT A PERSON A PERSON1

 CAUSE A PERSON1 BECOME [PLEASED] SELF.

iii) TRANSITIVE

 A PERSON2 TRANSFER SELF A PLACE4 A PLACE5

 <LOC A PERSON1> CAUSE A PERSON1 BECOME

 [PLEASED] SELF.

Because the verb in the above example is a state verb only the first

entry is applicable. Therefore another complete conception is required as the

object of the act DO. The next verb in the sentence is looked up in the

dictionary giving:

235

i) INDIRECT

AN ANIMAL1 TRANSFER SELF A PLACE4 A PLACE5

As the conceptual subject of the second verb is "I" the concept ANIMAL

is replaced by SELF. As the entry is a single conception the DO act is replaced

by the conception rather than making it the object of DO. The next part of the

sentence "to the park" is recognised as a possible case, "park" is looked up in

the dictionary and found to mean PARK, which is a group concept for which

PLACE may be substituted. The singular description is replaced by an entity

concept (say, PARKX) and placed in the destination (because of "to") part of the

act. This gives:

SELF TRANSFER SELF A PLACE P ARKX

 CAUSE SELF BECOME [PLEASED] SELF.

The final part of the sentence is interesting because of the many ways

in which it can be used:

"with+term"

i) term is object of the THROUGH statement (Schank's instrumental

case), e.g.:

I hit the boy with a cane.

ii) term is an additional term of the conception, e.g.:

I went with the girl to the park.

iii) term is an attribute of the immediately preceding term, e.g.:

I hit the boy with long hair.

iv) term is an attribute of the act, e.g.:

236

I hit the boy with vengeance.

The possibilities are checked in the order given until a suitable one is

found. In this case the first is ruled out because the only THROUGH statement

involving SELF TRANSFER is SELF MOVE and the object must be a body part,

which "girl" is not. The next case is checked and found to be satisfied, girl can

be another actor for the act TRANSFER.

If the third possibility had been checked it would only succeed if the

system knew about a particular park which had a girl in it. This brings up the

question of handling the definite article and other anaphoric references such as

pronouns. In all these cases the analyser uses the memory to try to find the

entity concept referred to, in this case a park. This is done by using the context

information contained in the reference of concepts, thus if a park had been

referred to in the immediately preceding discourse then the group concept

PARK would still have as its reference the entity concept which is the name of

the particular park under discussion. If this is not the case then the most recent

statements must be searched for some mention of a park and if none is found

then more information is looked for in the sentence, in this case for example

"with the girl" would be taken as a definition of the park described and the

complete memory would be searched for such a park. Pronouns are resolved by

searching for the most recent suitable object or person in the sentence being

analysed or in previous recent statements. The final analysis will be:

[SELF GIRL] TRANSFER SELF A PLACE PARKX

CAUSE SELF BECOME [PLEASED] SELF.

Note that SELF as subject refers to the PIDGIN system but SELF in the

object position refers to the complete subject.

237

2) "I saw Birmingham flying to Edinburgh."

The second example is described to indicate how syntactic ambiguity is

resolved. This has always been a problem with the traditional approach to

syntax analysis because of the lack of semantic information. The sentence

above is a poorly constructed English sentence because it is nearly always

parsed incorrectly on first reading. However, as it can be understood a

conversational system should also be able to analyse i to When "see" is looked

up in the dictionary the only suitable (transitive) entry gives:

SELF TRANSMIT BIRMINGHAM EYE SELF

THROUGH SELF PERCEIVE BIRMINGHAM.

The next verb ("fly") is' looked up in the dictionary but it is not clear

what the subject is. In such cases the last actor is taken, in this case

"Birmingham". However, the system cannot make Birmingham fly because

Birmingham is a place and fly requires an animal as subject (more specifically

FLY requires BIRD,PLANE,INSECT,PILOT or PASSENGER as subject, but

Birmingham is none of these). The choice of actor is therefore rejected and the

next rule is tried which selects, the next actor which is SELF. Selecting this

actor meant crossing back over the main verb and another rule states that if

this happens then the conception being generated is a time conception that

modifies the original conception. This actor choice succeeds and assuming SELF

is a PASSENGER and filling in the destination ("to place") gives:

SELF TRANSMIT BIRMINGHAM EYE SELF

 THROUGH SELF PERCEIVE BIRMINGHAM,

 WHILE SELF TRANSFER SELF A PLACE EDINBURGH

 THROUGH A PLANE TRANSFER SELF A PLACE EDINBURGH.

3) "The old man's glasses were filled with sherry." This example is

given in order to show how the knowledge possessed by the system can be

used by the analyser to resolve semantic ambiguity.

238

The sentential analysis of this sentence will find it is passive

and so the preceding actor will be made the object. If "by" is found then the

following noun group forms the subject but in this case there is no subject.

The word "glasses" is looked up in the dictionary and found to be

ambiguous between "drinking vessel" (GLASS) and "spectacles" (SPECTACLE).

Further, the ambiguity is not resolved by its qualifier ("old man's"). As the

definite article is used the system tries to resolve the "glasses" referred to by

searching the memory. If no such information is found a choice could be made

immediately that the most likely choice is SPECTACLE because they are more

often associated with old men than GLASS. Alternatively the choice can be left

until more information is available from the analysis of the rest of the sentence.

The main verb "fill" requires a LIQUID as object of a TRANSFER act and a

CONTAINER as the destination. This enables the first definition of "glass" to be

chosen and the final statement becomes:

A PERSON TRANSFER SOME SHERRY A CONTAINER

 SOME

GLASS <BELONG JOHN>.

where JOHN is the entity concept corresponding to the singular

description "the old man".

4.3 The Synthesis of English

The synthesis of English can vary from the random generation of

semantically meaningless but syntactically correct sentences by trivial

algorithms, through slot-and-filler techniques such as that used by Winograd's

system, to the complete generation of semantically correct sentences that

convey sensible information in the context of a conversation. In terms of

PIDGIN the problem divides into two parts, the generation of a statement that

239

conveys the required information and the translation of that

statement into English. 4.3A. Generating Statements A statement may be

"generated" simply by retrieving a matching statement from memory. This is

the way in which an answer to a user's question is generated, the question

forms the basis of the answer. Thus it is the user's ability to generate

statements that is being utilised by PIDGIN. Because PIDGIN may reply

elliptically the answer may bear little resemblance to the question at the

English level, for example:

Who went to the park?

John.

but at the level of the deep structure involved the two are equivalent. A

second point at which statements must be generated is when the system

wishes to inform the user that some problem has arisen, such as an

unresolvable reference, an ambiguity, an inconsistency or an unknown word. In

some of these cases the statement comes from parts of the user's sentence and

in others from the memory, these parts are then put together to form a

statement which is output to the user. This system is a type of slot-and-filler

algorithm but at the level of the deep structure. The basic forms of the possible

statements the system might need to make to the user ("error messages") are

stored in the memory and when used they have the appropriate parts filled in

with the particular relevant structures.

The third type of generation arises in the mode of working in which the

system automatically generates new statements from old and then asks the

user if they are true by outputting them as questions. Another type of

generation is discussed by one of Schank's associates (Goldman 1975). In this

the basis of the output is past input which has been translated into the deep

structure in memory. The point of this exercise is to illustrate that the system

240

has "understood" the input because the output is a sensible

paraphrase of the input. Because PIDGIN always outputs from its deep

structures this always occurs. Finally, it would be easy to randomly generate

statements using the concepts and conceptual knowledge in the memory. This

could per haps be done by randomly choosing a conception structure from the

verb-act dictionary, filling in a number of the actors with concepts of the correct

type, quantifying and qualifying these actors by choosing quantifiers, attributes

and specifiers that may modify the concept chosen and finally choosing a

selection of statement modifiers. The output of such a procedure would be a

semantically meaningful sequence of unconnected sentences.

4.3B Translating Statements into English

The synthesis of statements into English is an interesting problem as a

good synthesiser should not output any more information than is necessary for

the user to understand the statement. It should be fluent for example in its use

of pronouns and idioms and it should be able to translate deep structure

statements into the most natural phrasing and word order. The details of the

formation of a syntactically correct sentence using the analysis rules and the

dictionary in reverse can be found in Schank (1969b) and Goldman (1975). The

ability to use pronouns and omit information known by the user is one of the

good features of Winograd's outputting system. In PIDGIN the translation of

deep structures into English is divided into three steps. The first, most complex,

step is called synthesis and consists of searching the dictionary for the English

words that are equivalent to the various parts of the deep structure. These

words are then assembled into the shallow-structure buffer using the language

dependent rules of analysis in reverse. The second step, called amalgamation,

substitutes idioms and generates the surface structure which the final step,

241

called actualisation, translates into a character stream suitable for

output to the user.

4.4 Conversation

Conversation contains many features and is associated with many

problems that have not been discussed. A conversation is usually about some

topic, that is, people usually talk for a reason. This fact is made use of in

conversation by leaving certain things unsaid because they are obvious to both

parties. However, when one party is a computer this raises problems concerned

with how much the system needs to know before it can understand typical

typewritten communication. In order to answer this question a lot more needs

to be known about the form of such conversations. Although AI workers

generally assume that typical typewritten communication reads like children's

story books there is evidence that this is just not the case. Work done by

Chapanis (1975) indicates that when two people communicate to solve a

problem the language used is a long way from the English that most of us

believe we use. The results of Chapanis are so relevant to the problems faced

by conversational computer systems that they are worth describing in detail

with respect to PIDGIN. Chapanis set out to investigate how two people

communicate to solve a simple problem when various combinations of

communication channel are available, for example, voice only, voice and video,

voice and typewriting, typewriting only and so on. He discovered some

interesting relationships between the time taken to solve the problem and the

channel available but the interesting result from the point of view of PIDGIN is

a transcription of a typical conversation between two people using only a

typewriter to communicate and trying to solve a simple problem. The problem

was for one person to assemble a piece of equipment guided only by

242

instructions from the other person who had the equipment

assembly manual but could not see the equipment. The following is part of the

communication:

goaheaddoyouknowhowto put this togteher

ill tryits a trash toter ill type you the directions ok

put axle thru 38th holes from outside

38th holes/?? yes

put 1 handlebar on back of each outer frame line up bol t

holes

what does outer frame look like? its like a (W)

put bottom frame to outer frame on front+rear of outer

frames .

okuse 1+12 bolts

are your parts lab led by lettrs???

no ok the thing looks like a cart with room for 2 trash

cans the part that looks like this(XX)goes on the bottom

+the 2(W)parts goon the sids

put male ends? into female ends

what does that mean? i dont no

it looks like 3(U)s

what? 2(U)s go into each other then theyare put on other

u+put on W put top frame to front of outer fr.+to

handlbar 2 1/4 bolts put center support fro inside topfr.

use 2 1/4 boo thru center of top fro put 2 1/12 bolts

thrub center of side fr., bottomfr. 2 bottom of center

support fro

ok put on wheels 3 spoks on outside put on hubcap with

hammer put on handgrips DO ALL THESE STEPS FOR BOTH SIDES

ok?????

The above conversation is obviously between two inexperienced typists

but it was found that inexperienced typists took only about 3% longer than

experienced typists. This was because only about one third of the time was

spent communicating but it does illustrate that little was lost because of typing

errors. The above conversation illustrates this, not once is a spelling mistake,

ambiguity or abbreviation questioned. The only mistake that may have been

due to typing problems that was questioned was the omission of the oblique in

"3/8" in the third line. The other person queried this and surprisingly the person

confirmed the mistake and yet the conversation was continued without further

discussion. In terms of a PIDGIN type of system a number of points arise:

243

i) Typing mistakes are common, such as missing spaces,

misspelling of words, typing the wrong character.

ii) Spelling mistakes are common, this includes not only mistakes

such as spelling "together" as "togteher" but also spelling "know" as

"no".

iii) Punctuation is omitted or used to convey specific information. The

only use of the full stop in the above example is to terminate an

abbreviation and this is not done consistently.

iv) Abbreviations are invented and used as required. Thus one person

abbreviates "frame" to "fr." without explanation.

v) The typewriter is fully utilised to convey information, for example

the shape of the letters is used to convey pictorial information and

although the first time this is done it is enclosed in brackets "(W)" this

convention is not maintained consistently. An interesting combination of

pictorial with linguistic information is the construction "3(U)s".

How can a computer system cope with these types of real

conversational problem. They can be simplified to:

i) Any syntax driven system will not be suitable. English as it is used

seems to avoid every rule at some time. Hopefully, a system, such as

PIDGIN, which only uses syntax to guide it in its generation of deep

structures will be able to cope with this.

ii) The system must cope with spelling mistakes, words run together,

abbreviations, and words misused. This requires a much more careful

analysis of the input at the character level making full use of conceptual

244

information. It means that the itemisation of words cannot

be separated from the complete analysis.

iii) Analysis must proceed largely from left to right as it cannot be

assumed that sentences will be terminated in any way.

iv) Pictorial information must be capable of being picked out from

within the English input.

All the above points show that conversational problem solving systems

have a long way to go before they can cope with the full horrors of the real

world.

So far no overall controlling program has been described at the English

level corresponding to the PIDGIN driver at the PIDGIN level. This is because

the role of such a program has intentionally been kept to a minimum so that as

much as possible of the control is retained by the statements and rules in the

memory. In this way the overall control remains flexible and capable of being

altered and extended by the user. If the control program were incorporated at

the ABC level it could not be altered by conversation at the English level.

However, most of the detailed control is below the level that can be specified in

PIDGIN (and thus at the English level). The way in which this is partially

overcome is by means of special concepts that are recognised by certain

commands (see Division 2.3B) and cause special action to be taken, for

example:

SELF TRANSMIT A THOUGHT USER HERE.

will call the Analyser to read and translate a sentence and then bind the

concept THOUGHT to that sentence. And:

245

SELF TRANSMIT A THOUGHT HERE USER.

will call the Synthesiser to translate the PIDGIN statement which is the

reference of THOUGHT and then output it to the user. Both of these examples

demonstrate how a built-in ABC program can be called from the PIDGIN level,

hut obviously these programs are fixed and cannot be amended using PIDGIN.

If this is compared with the way that people appear to handle the same

problem then an interesting possible future extension to the system can be

imagined. For example, consider how an adult learns a foreign language.

Initially the vocabulary and syntax rules are learnt and are internally run

through every time a sentence is constructed but slowly the process seems to

become more automatic as if the rules were built-in and being used at a level

below that of ratiocination. It is as if people can use a complex English

description of what is required but as it is used it becomes translated into a

lower level unverbalised but equivalent form. In PIDGIN terms it is as if a

complex set of PIDGIN rules (whose evaluation corresponds to ratiocination)

could" be translated into an equivalent ABC program. Further, people seem to

be able to examine themselves carrying out these low level programs (for

example, problem solving) and generate approximately equivalent English level

programs that can be conveyed to others. It is interesting that these two

abilities do not themselves seem to be capable of examination suggesting that

there is an even-: lower level of program. The investigation of how these

abilities might be defined in terms of PIDGIN and ABC would seem to be most

fruitful.

246

CHAPTER 5 SUMMARY

PIDGIN is a programming language for developing conversational

problem-solving systems. It has a syntax based on an extended and

rationalized version of Schank's conceptualizations and a semantics derived

from PLANNER and CONNIVER. A system developed using PIDGIN is thus better

suited than a system based on Schank's static notation because the dynamic

interpretation of PIDGIN has been fully incorporated into the language. It is

also better than a system, such as that of Winograd, that uses PLANNER as its

deep structure because PLANNER was designed as a programming language for

people, not as a deep structure for natural language. The structure of PIDGIN

enables assertions, rules and heuristics to be incorporated in the system to

form a powerful deductive system. PIDGIN can also use 'this information to

form schemes and plans necessary for the solution of complex problems. It can

at the same time keep track of what it is doing, and as all the information is in

the form of PIDGIN statements it can be used to answer questions about how

and why it has carried out any particular action. It has also been shown how

PIDGIN can be used to generate hypotheses from the knowledge in its memory

and carryon a-conversation in which such hypotheses are checked with the

user. The limitations of PIDGIN have been mentioned all through the thesis.

The first and major requirement is an implementation of the complete PIDGIN

system so that problems raised can be investigated and used to improve

PIDGIN. The following list briefly describes some of the main areas that such a

system could be used to investigate:

i) The translator briefly described in this thesis could be

implemented in order to investigate the possibility of translating the

247

type of real human communication described at the end of

the last chapter.

ii) PIDGIN could be extended to investigate the type of belief

structures described by Colby (1973) and Abelson (1973).

iii) The problem solving ability of PIDGIN could be extended by

studying the ways in which a forward tree search and static evaluation

function could be derived from the linguistic deep structure.

iv) PIDGIN's learning ability could be extended to cover a scheme

involving regulated weights as well as an investigation of the more

difficult problem of generating new pattern-matching rules.

v) The ability to generate extended discourse on a single topic could

be studied working from a PIDGIN base. In this context a topic seems

to be similar to the type of scheme generated during problem solving.

Perhaps there is a close analogy between a conversation concerned

with solving a problem and the problem solving process itself.

vi) There are many other types of deep structure that could profit

ably be combined with the PIDGIN linguistic deep structure. For

example, pattern Matching structures of the type described in

connection with the "view", arithmetic and mathematical deep

structures as simply exemplified by the quantifier expressions of

PIDGIN, and deep structures corresponding to the notation of logic. The

important thing with all of these is to find some smooth transition

between them and the linguistic deep structure which should form the

common link between them all (although a better but more difficult

approach would be to regard them all as variations on some more basic

structure, such as ABC).

248

vii) As was pointed out at the end of the last chapter the

translation between PIDGIN and ABC is an important step in extending

the system to a point where all further extensions to the system can be

performed at the English level.

An investigation of the use of PIDGIN in a practical problem area would

be a good way to bring together the diverse and vague requirements of such a

system as well as forming a basis for further extensions. Such a problem area

needs to be some area that provides simple, ill defined problems that could

usefully benefit from being put into a rigid algorithmic framework.

249

APPENDICES

APPENDIX I - IMPLEMENTATION

APPENDIX II - THE KNOWLEDGE BASE

APPENDIX III - BIBLIOGRAPHY

250

APPENDIX I IMPLEMENTATION

A. ABC Implementation

ABC (Associative Backtrack Computer) was designed and developed in

order to simplify and rationalize the implementation of PIDGIN.

A brief description of ABC is given in Section 2.1.1 where it is clear that

PIDGIN is an extension of ABC. Because ABC forms the core of PIDGIN and

because ABC contains some features which are of interest in their own right this

Appendix describes ABC in some detail. However, this Appendix is not a

reference manual for ABC nor does it describe every feature in the language.

ABC is currently implemented in the programming language POP-2

(Burstall197l). It could be more efficiently implemented in a system

programming language but it would take about a year to implement and would

not be as flexible. The basic ABC system was implemented in a few weeks using

POP-2. It should be noted, that even if implemented in an assembler language

it would be very inefficient running on present day computers because it is a

recursive hierarchy language (Stansfield 1972) not a simple recursive language

and because it requires an associative memory in order to implement its data-

base search efficiently. ABL (Associative Backtrack Language) is the assembler

language of ABC. Its basic syntax is described in Section 2.1.1. In order to

program in ABL a computer terminal is required that has at least the' twenty six

letters of the alphabet, the ten digits and characters for the opening and closing

application, band and class brackets, the orderer, the negator, the decimal

point and sub-ten. This form of ABL is called Strict-ABL or SABL and it has a

syntax which can be simply described as words, numbers and expressions

251

enclosed in any of the three types of brackets (application, band

and class) to form an expression. However, SABL is not a convenient language

in which to program because of the large number of nested brackets usually

required. Therefore, an extended version of SABL called Meta-ABL or MABL was

developed. MABL requires extra characters to represent a terminator and

combiner (described later) and it is designed to make us of any further

characters that are available in order to allow expressions to be abbreviated.

1. The ABC Primitives

There is a special type of expression called an instruction, it is an

application whose first expression is a primitive (one of 42 special concepts)

and whose other expressions are called arguments. The 42 primitives currently

defined are listed below with their required arguments and a brief description of

what they do. In the description of the arguments "expr" stands for

"expression", "aspect" is a concept being used in a special way, alternative

arguments are enclosed in round brackets and optional arguments are followed

by "=" and any default value :

1 ASPECT concept aspect=REF

returns the expression associated with the concept-aspect pair. Always

succeeds.

2 ASSEMBLE

returns the SABL expression corresponding to the next MABL

expression from the current input stream. Fails if an assembler error is

detected.

252

3 ASSOC expr (concept band) aspect=REF

The expression is associated with the concept-aspect pair (or with

every such pair if the second argument is a band of concepts). Always

succeeds.

4 BAND expr (concept band) aspect=REF

like ASSOC except that the expression is added to the band which is

currently associated with the concept-aspect pair. If the pair is not

associated with a band then a band is created consisting of the first

expression and the current association. Always succeeds.

5 BYE expr= [ABC RESTARTED]

saves the complete current system work space on a disc file and

returns to the operating system level. When restarted the expression is

printed. Always succeeds.

6 CLASS expr (concept band) aspect=REF

same as BAND but a class is formed.

7 CLEAR expr aspect=REF

every concept in the expression is associated with its concept aspect

pair.

8 CLEARABC

re-initia1ises the ABC system and prints:

[ABC CLEARED.]

253

no aspect associations are altered.

9 COMBINE expr1 expr2, aspect=SUB

the two expressions are compared (see JOIN) and if this succeeds then

if a sub-expression of expression1 is substitutab1e for the

corresponding concept in expression2 then it is associated with the

concept-aspect pair. Succeeds and fails as for JOIN. It is the basis of

binding in PIDGIN.

10 DIV (number concept) (number concept)

the result is the first number divided by the second. If either argument

is a concept then the reference of the concept is used. Will fail if either

argument is not a number (or concept whose reference is a number).

11 DUMP level:::3 (number expr) =9999 outfile=CUOUT

prints details of the current associations (amount of detail is specified

by level) either from the complete data-base (when number specifies

the number of associations to be printed) or from the specified

expression to a specified disc file (outfile) or to the current output file

(CUOUT, see TO) if omitted.

12 ERROR expr number=100

equivalent to <RISE number expr FAIL> (see RUN and RISE).

13 FAIL expr=

evaluates the optional expression, if present, and fails.

254

14 FAILIF expr

evaluates the expression and fails if the expression succeeds, succeeds

if the expression fails.

15 FREEZE (concept band) aspect=REF

fixes the current expression associated with the aspect of the concepts

so that future attempts to alter the association are ignored (see

THAW). Always succeeds.

16 FROM (infi1e band) outfi1e=

makes the current input stream the file specified by the concept infile.

If infi1e is either USER or HERE then input is taken from the terminal. If

the first argument is an ordered band then this is regarded as the

current input stream. If the optional outfi1e argument is specified then

everything read from the input stream is printed on the output file (see

TO). The current input stream is made the reference of the concept

CUIN.

17 GET (number concept) expr

the number (or reference of the concept) is used to index the

expression. For example, if the number is n then the value is the nth

sub-expression of the expression. The evaluation will fail if the first

argument is not a number or is a number out of range.

18 GT (number concept) (number concept)

Succeeds if the first number (or reference of the concept) is greater

than the second, otherwise it fails.

255

19 JOIN expr1 expr2= aspect=SUB

The first argument is called the question and the second the candidate.

This primitive succeeds if the question matches the candidate using the

specified aspect. The following are the rules of matching: if the

question is the same as the candidate it succeeds. if the question,

candidate or aspect is the concept

NIL then it fails.

if the question is one of the following concepts and the candidate the

specified expression then it succeeds:

EXPR expression (always succeeds)

APPL application

BAND band (ordered or unordered)

CLASS class (ordered or unordered)

CHOICE band or class

ORDERED ordered band or class

CONCEPT concept

SYMBOL special character

GROUP concept whose reference is not ENTITY

ENTITY concept whose reference is ENTITY

FROZEN frozen concept (see FREEZE)

256

NUMBER number

INTEGER integer number

REAL non-integer number

PRIMITIVE concept which is one of the 42 primitives

ITEM concept or number

if the question is a concept then it succeeds if

 the aspect of the question matches the candidate

 using the TRANS aspect of the aspect.

if both are applications then it succeeds if each

 sub-expression of the question matches the corresponding

 sub-expression of the candidate.

if both are bands or both are classes then it

 succeeds if corresponding (if both are ordered)

 or any (if either or both are unordered)

 sub-expressions match.

if the question is a class then it succeeds if any

 sub-expression of the question succeeds.

if the candidate is a band or class then it succeeds

257

 if all (band) or at least one (class)

 sub-expression matches the question.

if none of the above are true it fails.

If the candidate expression is omitted then this primitive will match the

question with every expression currently associated with a concept-

aspect pair.

20 LT (number concept) (number concept)

the inverse of GT

21 MAKE expr aspect=REF

the result is an expression which is the same as the first argument

except that every concept is replaced by its aspect (unless it is frozen).

Always succeeds.

22 MAX band

the result is the number or reference of a concept that is the largest in

the band.

23 MIN band

inverse of MAX.

24 MONITOR outfile

258

sets up an output monitor stream to which all monitor

information (see TRACE) will be written. Outfile is the output file name,

or USER or HERE to have the information written to the terminal.

25 OK expr=

evaluates the optional expression, if present, and then succeeds.

26 POP concept aspect=REF

if the aspect of the concept is an ordered band or class then the first

sub-expression is returned as value and the rest of the band or class is

associated with the aspect of the concept. If the band or class is

unordered then a pseudo-randomly, selected sub-expression is

returned as value and the aspect is not altered. If the aspect is

anything else then that is returned as value and the aspect is not

altered. The primitive always succeeds.

27 PROCESS expr

The expression is evaluated and the primitive succeeds or fails as the

expression succeeds or fails.

28 PROD band

the result is the product of all the numbers (which may be the .

reference of a concept) in the band, it always succeeds.

29 QUOTE expr

the expression is returned as value. Always succeeds.

259

30 READ

reads and returns as value the next expression from the current input

stream.

31 READABL

reads and returns as value the next MABL unit from, the current input

stream (used by ASSEMBLE).

32 READS

reads a sequence of expressions from the current input stream

terminated by the character ".", "!" or "?" and returns all the

expressions as an ordered band.

33 REPEAT expr

repeatedly evaluates the expression until it fails, when the primitive

succeeds.

34 RESUME

an instruction with this as primitive is created by the RUN and RISE

primitives. It should not be used directly by the user as its arguments

are related to the internal state of the ABC processor. If a RESUME

instruction is evaluated then the system will return to the state it was

in immediately after the instruction was created.

35 RISE leve1=1 expr=NIL (OK FAIL) =OK (concept band) =

For details of the theory behind RUN and RISE see the report by J

Stansfield (1972). In some programming languages the facility these

provide is called "backtrack programming". RISE saves the current

260

state of the ABC system as a RESUME instruction and then

associates this with the reference of the concept CONTINUE. It then

returns to the specified level, or a higher level, and exits with the

specified value (the second argument), either succeeding (if the third

argument is OK) or failing (if FAIL).

The fourth argument specifies one or more concepts whose references

are to be reset to their current value if the RESUME instruction is

evaluated.

36 RUN expr level

evaluates the expression at the specified level. If an expression is

evaluated at level n then if a RISE is evaluated at level m while

evaluating that expression then it will exit from the RUN if m ~ n,

otherwise the RISE will continue on past the RUN. That is, the higher

the RUN level the more levels of RISE it will stop. In practice this

usually means that the more "important" a program the higher will be

the level at which it runs other programs. The ABC driver (see later)

will stop all RISEs and so can be regarded as RUNning the user's

program at an infinite level. User's errors (using the ERROR primitive)

usually RISE at level 100 and ABC system errors at levels between 200

and 300 depending on the severity. Therefore, by running a program at

level 300 the user will be able to trap all errors.

37 SIZE expr

its value is the number of top level sub-expressions in its argument.

Always succeeds.

38 SUB (number concept) (number concept) its value is the second

argument subtracted from the first. Always succeeds.

261

39 THAW (concept band) aspect=REF

unfreezes the expression currently associated with the aspect of the

one or more concepts specified so that it may again be altered. Always

succeeds.

40 TO outfile

alters the current output stream so that output is directed to the

specified file. If outfile is USER or HERE then output will be directed to

the terminal. The current output stream will be made the reference of

the concept CUOUT. Always succeeds.

41 TRACE primitive

causes the specified primitive to print out a trace print whenever it is

used. If TRACE is applied to the same primitive a second time the trace

is switched off and so on. The details printed by the trace mechanism

depend on the trace level. The trace level is an integer between zero

and ten that is the reference of the concept TRACE. Trace printing

varies between none at all (level zero) and all primitives evaluated with

their arguments plus full details every time a RESUME instruction is

created plus full details of all association changes, resetting of

associations on failure, new concepts read, reordering of unordered

bands and classes and machine utilisation statistics (level ten).

42 WRITE expr=

writes the expression to the current output file. If the expression is

omitted then a newline character is written. Always succeeds.

As well as the above primitives there are a number of concepts whose

reference is se t by the sys tem:

262

CONTINUE the last RESUME instruction created by RISE.

ARGS the arguments of the application currently being evaluated

formed into an ordered band.

CUIN the current input stream.

CUOUT the current output stream.

VALUE the result of the last evaluation.

2. The ABC Driver

When ABC is started it interacts with the user according to an algorithm

called the driver. The driver first calls CLEARABC then prints the

message :

[MABL STARTED.]

and then calls ASSEMBLE. If this fails because of an assembler error

then :

[MABL ERROR.] value

is printed and the driver is restarted. Otherwise, the value of the

assembly is processed by calling PROCESS. If the evaluation fails then:

[TOP FAIL.] level value

is printed and the driver restarted, otherwise the ASSEMBLE primitive is

recalled. The above description of the driver corresponds to the

following ABL program:

<ASSOC

263

 [<REPEAT

 [<CLEARABC> .

 <WRITE [MABL STARTED.]>.

 <REPEAT

 [(<ASSEMBLE><FAIL <WRITE [MABL ERRORJ>>)

 (<PROCESS VALUE> <FAIL <WRITE [TOP FAIL.]>>)J>

]] DRIVER> .

When ABC is running it is continually re-ordering all the unordered

bands and classes according to the results of the processing. The processor

orders unordered bands so that the member that has failed most often in the

past is processed first, the second most often next and so on. Classes are

ordered so that the member processed first is that which has succeeded most

often in the past. Further, when a band or class is searched for a matching

member then it will also be automatically re-ordered to speed up future

processing. This process of learning from the results of evaluating will improve

the efficiency of ABC when it is simulated on a single processor computer

assuming that there is a relationship between separate evaluations or searches

of the same band or class.

3. The MABL Assembler

The MABL assembler language is described because all the following

examples are written in MABL. It was developed in order to reduce the number

of nested bracketed expressions required by Strict-ABL and so improve the

clarity of programs written for ABC. The syntax of a MABL statement is the

same as that of a SABL expression except that the following construction is also

allowed:

op1 expr1 op2 expr2 , expr3 ... stopper

where op1 is an optional monadic operator, op2 is an optional dyadic

operator and stopper is either the orderer (".") or the terminator (";"). If the

dyadic operator and the monadic operator are present then the monadic

264

operator is applied to expr1 and then the dyadic operator is applied

to the result and expr2. The optional combiner (",") and its expression (expr3)

may be followed by zero or more other combiners plus expression. The

combiners are used to specify additional arguments for the dyadic operator, or

if this is omitted for the monadic operator. The following are the initial

operators :

" QUOTE - ASSOC

! POP * BAND

$ WRITE + CLASS

/ ASPECT = JOIN

^ RISE ? COMBINE

\ RUN : MAKE

The following examples make the syntax clearer:

MABL SABL

JOHN*NAME. <BAND JOHN NAME>

$/NAME. <WRITE <ASPECT NAME>>

$/x/!y; <ASPECT <WRITE <ASPECT X>>

 <POP Y>>

MALE*PERSON,SUB. <BAND MALE PERSON SUB>

4 ^ [NOT FOUND.] ,FAIL <RISE 4 [NOT FOUND] FAIL>

[<READ> -ITEM. <ASSOC [<ASSOC <READ> ITEM>

 /ITEM = !ARGS] -RD <COMBINE <ASPECT ITEM>

 <POP ARGS>>]

 RD>

Note that the number of arguments taken by the operator is

determined solely by the context of its use therefore the same operator symbol

can be used in one place as a monadic operator and in another as a dyadic

operator. A new operator symbol may be defined or an old one altered by

associating the required primitive with the reference of the symbol. In fact the

operators do not need to be symbols they can be any concept, including the

primitive themselves. For example WRITE can be defined as an operator by:

WRITE-WRITE.

265

After this WRITE can be used as an operator:

MABL SABL

WRITE [I KNOW.]. <WRITE [I KNOW]>

In MABL the ordered and unordered version of the band and class are

distinguished not by different types of brackets (because of limitations in the

character set of most terminals) but by the use of the orderer (".") symbol. If

any sub-expression of a band or class is terminated by the orderer then that

band or class is ordered otherwise it is unordered.

The escape symbol ("%") must precede any symbol or operator that is

being mentioned to stop it being used.

B. The PIDGIN Implementation

PIDGIN is implemented in MABL (see last division) but some of the

more basic PIDGIN routines have been rewritten in POP-2 and added to the

ABC system as primitives in order to improve the efficiency of the PIDGIN

system.

The following is a list of the major areas of the system that have been

implemented: i) The complete ABC system, including the MABL assembler.

ii) The PIDGIN interpreter.

iii) The PIDGIN assembler (Input to Strict PIDGIN).

iv) The PIDGIN disassembler (Strict to Input PIDGIN).

266

v) The PIDGIN resolver (matcher, binder and deductive

apparatus).

vi) The PIDGIN driver.

The following is a list of the major areas of the systems that have not,

or have not fully, been implemented:

i) Translation between PIDGIN and English.

ii) The VIEW.

iii) Scheming and Planning.

The following MABL programs describe part of the PIDGIN system,

although much of the logic shown is now implemented in POP-2:

[<REPEAT

 ([<READTHOUGHT> -THOUGHT.

 ([/THOUGHT? MEMORY/CONNECTOR. $ [I KNOW.]]

 [/THOUGHT * MEMORY, CONNECTOR. $ OK])]

 [<READABL>-INSTR. <INSTR>]

 <ERROR [ILLEGAL PIDGIN STATEMENT.]>>>

 $ [CHAT TERMINATED.]]-CHAT.

[<READACTOR> -SUBJECT.

<OK READMODIFIER> -MODIFIER. <<READACT>. "BE) -ACT.

<OK READACTOR> -OBJECT.

<OK READACTOR> -SOURCE. <OK READACTOR>-DESTINATION.

:" <ACT [SUBJECT OBJECT SOURCE .DESTINATION]

MODIFIER>*CONCEPTION.

[<OK READMODIFIER> -THMOD.

 <OK READCONNECTOR> -CONNECTOR.

 ([/CONNECTOR? /TERMINATORS. !CONCEPTION-THOUGHTJ

 [<READTHOUGHT>

 ! CON CE PTI ON -CON.

 :" <CONNECTOR THMOD CON THOUGHT> -THOUGHT.]

 <ERROR [ILLEGAL PIDGIN THOUGHT.]»]

]-READTHOUGHT.

267

[%. %1] -TERMINATORS.

[MOVE PASS TRANSFER TRANSMIT] -TRANS ,SUB.

[COGITATE IDENTIFY PERCEIVE] - TROW,SUB

[BE BECOME DO TRANS TROW] -ACT,SUB.

[<READ> 1 ACT/SUB] -READACT.

[<OK READQUANTIFIER> -QUANTIFIER.

<OK READATTRIBUTE> -ATTRIBUTE.

 <<READNOMINAL> -NOMINAL.

 [<<FAILIF. /QUANTIFIER=UNDEF>.

 <FAILIF./ATTRIBUTE=UNDEF>>

 <ERROR [ILLEGAL PIDGIN NOMINAL]>]).

 <REPEAT READSPECIFIER*SPECIFIER>.

 :" <NOMINAL QUANTIFIER ATTRIBUTE SPECIFIER>

] - READACTOR.

[<READ> =% [.

 <REPEAT (<READSPECIFIER> * SPEC. <READMOD> * MOD ».

 <<READ> = %J. <ERROR [MISSING %J.]>.)

 :"<MOD SPEC>

]-READMODIFIER.

[<READ> = % [.

<REPEAT [<READ> -ITEM <FAILIF ITEM= %]>.

ITEM*ATTRIBUTE]>. :ATTRIBUTE.

]-READATTRIBUTE.

[THE A AN SOME MOST EVERY ANY ALL] -QSPECIALS.

[([<READ> = %<.

 <READ> 1 [MORE LESS EQUAL ABOUT]. VALUE-COMPARATOR.

 <READACTOR> -QUANT.

 <READ> = %>.]

 [<READ> = % =.

 ([<READ> =NUMBER. VALUE-QUANT.

 EQUAL-COMPARATOR.]

 <ERROR [MISSING NUMBER]>)].

[<READ> ? /QSPECIALS. VALUE-QSPEC.

: [QSPEC COMPARATOR QUANT.] ? [[THE EQUAL 1.][A EQUAL 1.]

 [AN EQUAL 1.]

 [SOME MORE 0.]

 [MOST MORE [DIV ALL 2.].]

 [EVERY EQUAL ALL.]

 [ANY EQUAL ALL.]

 [ALL EQUAL ALL.]]]

[<READ> -NUMBER. VALUE-QUANT. EQUAL-COMPARATOR.])

:"<COMPARATOR QUANT>

]-READQUANTIFIER.

[<READ> = %<.

 ([<READ> = %<.

 ([<READ> -RELATION.

 <READ> 1 [MAX MIN MEAN]. VALUE-RELMOD.

 <READ> = %>.

268

 : [RELATION RELMON.] -RELMOD.].

 <ERROR [ILLEGAL RELATION MODIFIER.]>>]

[<READ> -RELATION.

<READACTOR> -ACTOR. <READ> = %>.])

:" <RELATION ACTOR>

]-READSPECIFIER.

269

APPENDIX II THE KNOWLEDGE BASE

A. Primary Knowledge

The primary knowledge consists of those PIDGIN statements read in at

priority 100 that determine the allowed form of all future statements. There are

a number of predefined concepts which can be substituted for a variety of

structures, for example, any nominal can be substituted for by the concept

THING, any PIDGIN statement by STATEMENT, any action by ACTION, state by

STATE and so on.

ALL FORCE <SUB A THING>.

ALL OWNER <SUB A THING>.

ALL PLACE <SUB A THING>.

ALL OBJECT <SUB A THING>.

ALL BEING <SUB A THING>.

ALL THINKER <SUB A THING>.

ALL LIFE <SUB A BEING>.

ALL BODYPART <SUB AN OBJECT>.

ALL BODYP ART <PART A LIFE>.

ALL MIND <SUB A PLACE>.

ALL MIND <PART A THINKER>.

MEMORY <SUB A MIND>.

HERE <SUB A MIND>.

ALL USER <SUB A MIND>.

ALL VIEW <SUB A MIND>.

SELF <SUB A USER>.

ANY THING BE.

ANY THING BECOME SELF.

ANY BEING TROW ANY THING.

ANY THINKER COGITATE ANY THOUGHT.

ANY LIFE IDENTIFY ANY PATTEPN.

ANY LIFE PERCEIVE ANY OBJECT.

ANY LIFE PERCEIVE ANY OBJECT.

ANY LIFE DO ANY THOUGHT.

(ANY BEING ANY FORCE) TRANS ANY THING ANY THING2 ANY

THING3.

ANY LIFE MOVE ANY BODYPART ANY PLACE} ANY PLACE1.

ANY THINKER PASS ANY OBJECT ANY OWNER1 ANY OWNER2.

ANY FORCE TRANSFER ANY OBJECT ANY PLACE ANY PLACE .

ANY THINKER TRANSMIT ANY THOUGHT ANY MIND1 ANY MIND2.

ANY STATE SUGGEST ANY STATE.

ANY STATE ENABLE ANY ACTION.

ANY ACTION PRODUCE ANY STATE.

ANY ACTION CAUSE ANY ACTION.

ANY ACTION CAUSE ANY ACTION, THEREFORE ANY ACTION.

ANY ACTION THROUGH ANY ACTION.

ANY ACTION WHILE ANY ACTION.

270

ANY CONCEPTION IF ANY RULE.

B. General Knowledge

The following statements form part of the general knowledge base of a

typical use of PIDGIN.

ALL ANIMAL <SUB AN OBJECT>.

ALL ANIMAL <SUB A FORCE>.

ALL ANIMAL <SUB A LIFE>.

ALL PERSON <SUB AN ANIMAL>.

ALL PERSON <SUB AN OWNER>.

ALL PERSON <SUB A THINKER>.

ALL MAN <SUB A PERSON>.

ALL WOMAN <SUB A PERSON>.

BILL <SUB A MAN>.

JOHN <SUB A MAN>.

MARY <SUB A WOI1AN>.

JILL <SUB A WOMAN>. ALL HAND <SUB A BODYPART>.

ALL FOOT <SUB A BODYPART>.

ALL SENSOR <SUB A MIND>.

ALL EYE <SUB A SENSOR>.

ALL EAR <SUB A SENSOR>. ALL DOG <SUB AN ANIMAL>.

ALL CAT. <SUB AN ANIMAL>.

ALL BOOK <SUB AN OBJECT>. ALL ALIVE <SUB AN ATTRIBUTE>.

ALL DEAD <SUB AN ATTRIBUTE>.

ALL HAPPY <SUB AN ATTRIBUTE>.

ALL SAD <SUB AN ATTRIBUTE>.

ALL COLOUR <SUB AN ATTRIBUTE>.

ALL RED <SUB A COLOUR>.

ALL BLUE <SUB A COLOUR>. ALL BIRTHDAY <SUB AN EVENT>.

ALL HOUSE <SUB AN OBJECT>.

ALL PARK <SUB A PLACE>.

ALL INCH <SUB AN OBJECT>.

ALL YEAR <SUB A TIME>. ALL BELONG <INVERSE A POSS>.

ALL HEIGHT <SUB A MEASURE>.

ALL AGE <SUB A MEASURE>.

ALL OLD <INVERSE AN AGE>. =N INCH <HEIGHT AN OBJECT>.

=N YEAR <OLD A LIFE>.

A LIFE <AGE =N YEAR>. ALL [COLOUR] OBJECT.

ALL [ALIVE] ANIMAL. ALL [DEAD] ANIMAL.

ALL [HAPPY] THINKER. ALL [SAD] THINKER.

<MULT M N> OBJECT1 <PART AN OBJECT3>

 IF =M OBJECT1 <PART AN OBJECT2>

 AND =N OBJECT2 <PART AN OBJECT >.

A PERSON <POSS AN OBJECT>

 ENABLE THE PERSON PASS THE OBJECT SELF A PERSONZ.

A PERSON PASS AN OBJECT SELF A PERSON

271

 PRODUCE THE PERSON <POSS THE OBJECT> [NOT]

 AND THE PERSON2 <POSS THE OBJECT>. #

A PERSON DO AN ACTION

 PRODUCE A [HAPPY PERSON2

SUGGEST

 THE PERSON DO AN ACTION

 PRODUCE THE [HAPPY] PERSON.

A PERSON DO AN ACTION PRODUCE A [HAPPY] PERSON

AND THE PERSON DO AN ACTION2 PRODUCE A [SAD] PERSON3

 SUGGEST

 THE PERSON2 DO AN ACTION3 PRODUCE A [SAD] PERSON3.

c. Specialist Knowledge

The level of knowledge referred to as specialist will be indicated by

showing some of the PIDGIN statements necessary to set up the EIKASIA chess

system described in Chapter 3.

Chapter 3 already shows a number of statements necessary for setting

up EIKASIA and these all form part of the specialist knowledge concerned with

playing the two kings, one pawn endgame. The following statements give some

of the overall positive and negative states and a few simple rules for playing:

A WIN <SUB AN ATTRIBUTE <FEEL 100 GOOD».

A DRAW <SUB AN ATTRIBUTE <FEEL 0 GOOD».

A LOST <SUB AN ATTRIBUTE <FEEL -100 GOOD>>.

A [WIN] GAME IF A PAWN <ABOVE A7>.

A [DRAW] GAME IF WPAWN <LOC BOD.

AN [ADVANCE] PAWN ENABLE PAWNIDVE.

A [SELFBLK ROOKPAWN] PAWN ENABLE LETPASS.

A [ROOKPAWN] PAWN ENABLE WGOPAWN.

SELF IDENTIFY * <WKING WPAWN BKING>

 CAUSE PAWNMOVE .

SELF IDENTIFY * <<A SQUARE BKING>

 </{ SQUARE WPAWN>

 <WKING 2 A SQUARE »

 CAUSE SELF TRANSFER WKING A SQdARE4 A SQUARE3'

A[CANRUN]PAWN ENABLE RUN.

272

In the above few statements PAWNMOVE, LETPASS,

WGOPAWN and RUN are labels (concepts whose reference is used) that have

previously been defined as the appropriate actions. Next a few of the more

complex predicates and actions are described:

i) CANRUN

This predicate is the implementation of the "rule of the square". This

rule says that if the black king lies within a square formed with the

pawn in the bottom corner farthest from the king then the king will be

able to reach the pawn before the pawn can be queened. The rule

assumes that white has the move and that if the pawn is on the second

rank then it is assumed to be on the third rank.

A PAWN <WC 3 RANK> IF THE PAWN <LOC 2 RANK>. A [CANRUNJ

PAWN IF

THE PAWN <LOC =R RANK> <LOC =F FILE>

AND BKING <ABOVE =R RANK>

AND BKING <LEFT <SUB F <SUB 8 R»FILE

OR BKING <RIGHT <ADD F <SUB 8 R»FILE.

ii) NEEDSUP This predicate is the "rule of the square" for the white

king, that is, it determines if the white king is in the promotion square of the

white pawn and can thus reach the pawn before the pawn can reach rank 8.

The predicate is the same as CANRUN with WKING substituted for BKING. For a

description of the predicates ADVANCE, CAPTURE, SELFBLK and MATCH1 see

Chapter 3.

iii) WGOPAWN

This action moves the white king to the square nearest to the white

pawn:

273

SELF TRANSFER WKING A SQUARE1 A SQUARE2

<BETWEEN [THE SQUARE,_WPAWNJ>

iv) SUPPORT

This action moves the white king to support the pawn. This is done by

moving the king to the square which is between them (WGOPAWN), if this

places the king next to the pawn then the action fails (automatically restoring

the original position of the king) and the pawn is advanced instead

(PAWNSTEP). WGOPAWN AND A SQUARE <BE1~EN [WKING WPAWNJ~

OR PAWNSTEP: SUPPORT.

v) MANOEUV4

This action is one of the set manoeuvres, it moves the white king

towards square G7:-

SELF TRANSFER WKING A SQUARE!

A SQUARE2 <BETWEEN [THE SQUARE! G7J>

: MANOEUV 4.

MANOEUV5 is the same as MANOEUV4 but with BKING substituted for

WKING.

D. The Dictionary

The following are some typical dictionary entries. The verbs are given

first as they form the foundation of the translation scheme. In order to form a

274

valid PIDGIN statement from the lines below each should start with

"$<DICT" and be terminated by">.". By convention the sentential subject is

marked in the deep structure by the subscript 1, and any objects by subscripts

2 and 3. ADVISE TRANSITIVE

A PERSON TRANSMIT A THOUGHT SELF A PERSON2

BE TRANSITIVE

A THING1 <SUB A THING2>

BE TRANSITIVE

A THING1 <SUB AN ATTRIBUTE2>

BE TRANSITIVE

A THING1 <SUB A RELATION2>

BELIEVE STATE

A PERSONL [CAN] TRANSMIT A THOUGHT2 SELF MEMORY

BELIEVE TRANSITIVE

A PERSON TRANSMIT A THOUGHT SELF A PERSON

CAUSE2THE THOUGHT BECOME SELF<LOC[PERSON1]MEMORY>

BELIEVE TRANSITIVE

A PERSON2 TRANSMIT A THOUGHT SELF A PERSON1

CAUSE THE PERSON1 COGITATE THE THOUGHT

AND THE PERSON1 TRANSMIT THE THOUGHT

SELF MEMORY

COMFORT TRANSITIVE

A PERSON DO AN ACTION

CAUSE AN [UPSET] PERSON BECOME [COMFORTABLE] SELF

EAT TRANSITIVE

AN ANIMAL TRANSFER A FOOD2 A PLACE STOMACH

FILL TRANSITIVE

AN ANIMAL1 TRANSFER A LIQUID A PLACE A CONTAINER2

FLY INDIRECT

A FLYER] TRANSFER SELF A PLACE4 A PLACES

FLY TRANSITIVE

A PILOT DO A PLAN

CAUSE A PLANE2 TRANSFER SELF A PLACE4 A PLACES

FLY INDIRECT

A PASSENGER1 TRANSFER SELF A PLACE4 A PLACES

THROUGH A PLANE TRANSFER SELF A PLACE4 A PLACES

GET TRANSITIVE

A PERSONI PASS A THING2 A PERSON A PERSON!

GET TRANSITIVE

A PERSON1 [CAN] TRANSMIT A THOUGHT A PERSON2 SELF

GIVE DOUBLE

A PERSON1 PASS A THING3 SELF A PERSON2 GO INDIRECT

AN ANIMAL1 TRANSFER SELF A PLACE4 A PLACES

GROW STATE

A PERSON DO A PLAN

[INTEND] CAUSE A PLANT BECOME [BETTER] SELF

HAVE TRANSITIVE

A PERSON1 TRANSMIT A THOUGHT2 MEMORY SELF

HAVE TRANSITIVE

A PERSON4 PASS AN OBJECT2 SELF A PERSON1

HAVE TRANSITIVE

275

AN ANIMAL1 <HAS A SICKNESS2>

HIT TRANSITIVE

A PERSON1 [<DEGREE VIOLENT>]TRANSFER AN OBJECT

SELF A PERSON2

KILL TRANSITIVE

A PERSON DO A PLAN

CAUSE AN ANIMALZ BECOME [DEAD] SELF

LEARN INDIRECT

A PERSONL TRANSMIT A THOUGHTZ SELF MEMORY

LIKE TRANSITIVE .

A PERSONZ DO AN ACTION

CAUSE A PERSON! BECOME [PLEASED] SELF

LOVE TRANSITIVE

A PERSON COGITATE A PERSON.

CAUSE A PERSON! BECOMEZ[LOVE] SELF

MOVE TRANSITIVE

A FORCE1 TRANSFER AN OBJECT2 A PLACE4 A PLACE1)

PONDER TRANSITIVE

A THINKER1 COGITATE A THOUGHT

PUNCH TRANSITIVE . .

. A PERSON1[<DEGREE VIOLENT>] MOVE A FIST SELF AN

OBJECT2

RECOGNISE TRANSITIVE

A PERSON1 IDENTIFY AN OBJECTZ

REMEMBER TRANSITIVE

A PERSON1 TRANSMIT A THOUGHTZ MEMORY SELF

SEE INTRANSITIVE

A PERSON1 [CAN] TRANSMIT A THOUGHT SELF MEMORY

SEE TRANSITIVE

AN ANIMAL1 PERCEIVE AN OBJECTZ

TELL TRANSITIVE

A PERSON1 TRANSMIT A THOUGHT SELF A PERSON2

THREATEN TRANSITIVE

A PERSON TRANSMIT

<A PERSON2 DO A THOUGHT CAUSE A PERSON1 DO

AN ACTION [INTEND] CAUSE THE PERSONZ

BECOME [HURT] SELF>

SELF A PERSON

THROW TRANSITIVE 2

AN ANIMAL TRANSFER AN OBJECTZ SELF A PLACE4

THROUGH THE ANIMAL! MOVE HAND A PLACES A PLACE6

WALK INDIRECT

AN ANIMAL TRANSFER SELF A PLACE4 A PLACES

THROUGH THE ANIMAL1 MOVE 2 FOOT A PLACE6 A PLACE]

WANT STATE

A LIFE DO AN ACTION2

CAUSE A PERSON1 BECOME [PLEASED] SELF

WANT TRANSITIVE

A PERSON PASS AN OBJECT A PERSON A PERSON

CAUSE A PERSON1 BECOME [PLEASED] SELP

WANT TRANSITIVE

A PERSON2 TRANSFER SELF A PLACE4 A PLACES<LOC A PERSON1>

CAUSE A PERSON1 BECOME [PLEASED] SELF

WONDER INDIRECT

A PERSON1 COGITATE A THOUGHT2

THE DETERMINER A THING

A DETERMINER A THING

SOME DETERMINER SOME THING

276

ALL DETERMINER ALL THING

PAWN NOUN A PAWN

KING NOUN A KING

TREE NOUN A TREE

ON PREPOSITION A THING <ABOVE A THING2>

BY PREPOSITION A THING <LOC A THING2>

WHITE ADJECTIVE A [WHITE] THING

HAPPY ADJECTIVE A [HAPPY] PERSON

WHERE QUESTOR A THING <LOC A THING2>

WHY QUESTOR A THINKER COGITATE A SCHEME

HOW QUESTOR A THINKER COGITATE A PLAN

WHEN QUESTOR A THINKER DO A PLAN

277

APPENDIX III BIBLIOGRAPHY

The following abbreviations are used in this bibliography:

ACM Association for Computing Machinery

AI Artificial Intelligence

CACM Communications of the ACM

DMIP Department of Machine Intelligence and Perception

IBM International Business Machines

IJCAI International Joint Conference on AI

JCC Joint Computer Conference HI Machine Intelligence

MIT Massachusetts Institute of Technology Proc. Proceedings.

The date given for books is the date of the first publication, this is not

always the edition or publishers described.

Abelson, R.P. (1973): The Structure of Belief Systems Computer Models of

Thought and Language. Schank and Colby, San Francisco: W.H.

Freeman.

Ambler, A.P., Burstall, R.M. (1969): Question Answering and Syntax Analysis.

DMIP Experimental programming Report No. 18.Edinburgh University.

Anderson, D.B. (1972): Lib Pico-Planner. POP-2 Program Library, School of AI,

Edinburgh University.

Averbakh, Y. (1958): Chess Endings: Essential Knowledge Pergamon Press.

278

Becker, J.D. (1973): A Model for the Encoding of Experiential

Information. Computer Models of Thought and Language. Schank and

Colby, San Francisco: W.H. Freeman.

Bernstein, A. (1958): A Chess-playing Program for the IBM 704 Computer,

Proc. of the Western JCC, pp 157-159.

Black, F. (1964): A Deductive Question-Answering System, Ph.D. Thesis

Harvard University. Also in Semantic Information Processing, Minsky.

Bobrow, D.G. (1964): Natural Language Input for a Computer Problem Solving

System. Semantic Information Processing, Minsky.

Bratley, P., Dakin, D.J. (1968): A Limited Dictionary for Syntactic Analysis, Ml

2, Edinburgh University Press.

Burstall, R.M., Collins, J.S., Popplestone, R.J. (1971): Programming in POP-2,

Edinburgh University Press.

Carroll, J.B. (1964): Language and Thought. Prentice Hall.

Chapanis, A. (1975): Interactive Human Communication, Scientific American,

Vol. 226, No.4, pp 76-83.

Chomsky, N. (1968): Language and Mind. Harcourt, Brace and World.

Colby, K.M., Tesler, L., Enea, H. (1969a): Experiments with a Search Algorithm

on the Data-base of a Human Belief Structure, Stanford AI Memo No.

94. Stanford University, California.

----Smith, D.C. (1969b): Dialogues Between Humans and an Artificial Belief

System. Stanford AI Memo No. 97.

279

----(1973): Simulations of Belief Systems. Computer Models of

Thought and Language, Schank and Colby, San Francisco: W.H.

Freeman.

Coles, L.S. (1968): An On-line Question-Answering System with Natural

Language and Pictorial Input. Proc. of the National ACM Conference, pp

157-167.

--- (1968): Syntax Directed Interpretation of Natural Language. Representation

and Meaning, Simon and Siklossy, Prentice Hall.

Craig, J.A., Berezner, S.C., Carney, H.C., Longyear, C.R. (1966): DEACON:

Direct English Access and Control. Proc. of the Fall JCC, pp 365-380.

Cresswell, M.J. (1973): Logics and Languages. Methuen and Co. Darlington, J.

(1963): Translating Ordinary Language into Symbolic Logic. Project

MAC, Memo MAC-M-149. MIT. Davies, D.J.M. (1971): POPLER: A POP-2

PLANNER. DMIP Report MIP-R-89, Edinburgh University. _Isard, S.D.

(1972): Utterances as Programs, MI 7, Edinburgh University Press.

Dewar, H., Bratley, P., Thorne, J.P. (1969): A Program for the Syntactic

Analysis of English Sentences. CACM Vol. 12, No.8, pp 476-479.

Feigenbaum, E.A., Feldman, J. (1963): Computers and Thought, McGrawHill.

Fine, R. (1941): Basic Chess Endings, Philadelphia.

Fodor, J.A., Katz, J.J. (1964): The Structure of Language, Prentice Hall.

Friedberg, R.M. (1968): A Learning Machine: Part 1, IBM Journal, January

1968, pp 2-13.

Geschwind, N. (1973): Language and the Brain, Scientific American, Vol. 226,

No.4, pp 76-83.

280

Goldman, N.M. (1975): Sentence Paraphrasing from a

Conceptualase, CACM, Vol. 18, No.2, February 1975, pp 96-107.

Good, I.J. (1968): A Five Year Plan for Automatic Chess. MI 2. Edinburgh

University Press.

Green, B.F., Wolf, A.K., Chomsky, C., Laugherty, K. (1961): Baseball: An

Automatic Question-Answerer, Proc. of the Western JCC, May 1961.

Also in Computers and Thought, Feigenbaum, McGraw Hill.

Green, C.C., Raphael, B. (1969): Research on Intelligent Question-Answering

Systems. Proc. ACM 23rd National Conference, Princeton. Brandon

systems.

Halliday, M.A.K. (1970): Functional Diversity in Language as Seen from a

Consideration of Modality and Mood in English. Foundations of

Language. Reidel, Vol. 6, pp 322-361.

Hebb, D.O. (1949): The Organisation of Behaviour: A Neuropsychological

Theory. John Wiley and Sons, New York.

Hewitt, C. (1971): Procedural Embedding of Knowledge in PLANNER. Proc. of

the Second IJCAI, September 1971, pp 167-182.

 ---(1972): Description and Theoretical Analysis (Using Schemata) of PLANNER:

A Language for Proving Theorems and Manipulating Models in a Robot.

MIT AI Laboratory, Ph.D. Thesis.

Huberman, B. (1968): A Program to Play Chess Endgames. Stanford AI Memo

No. 65

281

Hunt, E. (1973): The Memory We Must Have, Computer Models of

Thought and Language, Schank and Colby, San Francisco: W.H.

Freeman.

Jinich, A. (1971): Some Suggestions for a Question-Answering System Using

Types. DMIP Diploma thesis, Edinburgh University.

Lamb, S.M. (1966): Outline of Stratificational Grammar, Georgetown University

Press.

Landin, P.J. (1965): A Generalisation of Jumps and Labels. Univac Systems

Programming Research Report.

Levien, R.E., Maron, M.E. (1967): A Computer System for Inference Execution

and Data Retrieval. CACM, Vol. 10. No. 11, November 1967, pp 715-

721.

Lighthill, J. (1973): Artificial Intelligence: A Paper Symposium. Science

Research Council.

Lindsay, R.K. (1963): Inferential Memory as the Basis of Machines Which

Understand Natural Language. Computers and Thought, Feigenbaum,

McGraw Hill.

Longuet-Higgins, H.C. (1972): The Algorithmic Description of Natural Language.

Proc. of the Royal Society 182, pp 255-276.

McCarthy, J. (1959): Programs with Common Sense. Proc. of the Symposium

on the Mechanisation of Thought Processes. H.M.S.O.

 ----Hayes, P. (1973): Some Philosophical Problems from the Standpoint of

Artificial Intelligence. Stanford AI Memo. Also in MI 4,1969, pp 463-

502, Edinburgh University Press.

282

Michie, D. Machine Intelligence 1 - 8, Edinburgh University Press.

 ----(1972): Programmer's Gambit, New Scientist, August 1972, pp 329-332.

Minsky, M. (1968): Semantic Information Processing, MIT Press.

 ----(1968): Matter, Mind and Models, Semantic Information Processing,

Minsky. Montague, R. (1969): On the Nature of Certain Philosophical

Entities. The Monist. Vol. 35, pp 159-194.

----(1970a): English as a Formal Language. Linguaggi nella Societa e nella

Technica Milan, pp 189-224.

 ----(1970b): Pragmatics and Intensional Logic. Synthese 22 pp 68-94.

 ----(1970c): Universal Grammar. Theoria (a Swedish Journal of Philosophy),

Vol. 36, pp 373-397.

 ----(1973): The Proper Treatment of Quantification in Ordinary English.

Approaches to Natural Language, Hintikka, Reidel.

Mott, D.H. (1973): A Computer Program that Learns to Model Its Environment

by Experimentation and Communication via Natural Language,

unpublished research paper.

Muir, J. (1972): A Modern Approach to English Grammar: An Introduction to

Systemic Grammar, Batsford.

Newell, A., Shaw, J.C., Simon, H.A. (1957): Empirical Explorations of the Logic

Theory Machine: A Case Study in Heuristic. Western Computer Proc.

1957, pp 218-230.

283

----Shaw, J.C., Simon, H.A. (1958): Chess-playing Programs and

the Problems of Complexity, IBM Journal of Research and Development,

vol. 2, No.4, pp 320-335. Also in Computers and Thought, Feigenbaum.

 ----Shaw, J.C., Simon, H.A. (196la): Report on a General Problem-Solving

Program. Engineering Summer Conferences.

 ----Simon H.A. (196lb): GPS, a Program that Simulates :Human Thought,

Lernende Automaten, Billing, H. Munich pp 109-124. Also in Computers

and Thought, Feigenbaum.

----et.al. (1973): Speech Understanding Systems, North Holland! American

Elsevier.

Ogden, C.K. (1933): Basic English: An Introduction with Rules and Grammar.

4th Edition, London: Kegan Paul, Trench, Trubner and Co.

 ----(1968): Basic English International Second Language, Harcourt, Brace and

World. Piaget, J. (1929): The Child's Conception of the World,

Routledge & Kegan Paul.

Phillips, A.V. (1960): A Question-Answering Machine, MIT AI Memo No. 16.

Polya, G. (1945): How to Solve It, Princeton University Press.

Pople, H.E. (1973): A Goal-Oriented Language for the Computer,

Representation and Meaning, Simon, Prentice Hall.

Quillian, M.R. (1968): Semantic Memory, Semantic Information Processing,

Minsky.

 ----(1969): The Teachable Language Comprehender, CACM Vol. 12, No.8,

August 1969, pp 459-475.

284

Quine, W.V.O. (1960): Word and Object. MIT Press.

Raphael, B. (1968): SIR: A Computer Program for Semantic Information

Retrieval, Semantic Information Processing, Minsky.

Samuel, A.L. (1959): Some Studies in Machine Learning Using the Game of

Checkers, IBM Journal of Research and Development, Vol. 3, No.3 pp

210-229. Also in Computers and Thought, Feigenbaum.

Schank, R.C. (1968): A Notion of Linguistic Concept, A Prelude to Mechanical

Translation, Stanford AI Memo No. 75, Stanford University, California.

---- Tesler, L.G. (1969a): A Conceptual Parser for Natural Language, Stanford

AI Memo No. 76.

 ----(1969b): A Conceptual Dependency Representation for a Computer

Oriented Semantics. PhD. Thesis, University of Texas. Also Stanford AI

Memo No. 83.

 ----Tesler, L. ,Weber, S. (l970a): Spinoza II: Conceptual Case-based Natural

Language Analysis, Stanford AI Memo No. 109.

 ----(1970b): "Semantics" in Conceptual Analysis, Stanford AI Memo No. 122.

 ----(1971): Finding the Conceptual Content and Intention in an Utterance in

Natural Language Conversation. Proc. of the Second IJCAI, September

1971.

----(1972): Conceptual Dependency, Cognitive Psychology, I Vol. 3, No.4.

----(1973a): The Fourteen Primitive Actions and Their Inferences, Stanford AI

Memo No. 183.

285

 ----(1973b) Identifications of Conceptualisations Underlying

Natural Language, Computer Models of Thought and Language. Schank

and Colby, San Francisco: W.R. Freeman. ----Goldman, N., Rieger, C.,

Riesbeck, C. (1973c): MARGIE: Memory, Analysis, Response Generation

and Inferences on English. Proc. of the Third ICAI.

Schwarcz R.M., Burger, J.F., Simmons, R.F. (1970): A Deductive Question-

Answerer for Natural Language Inference. CACM, Vol. 13, No.3, pp

167-173.

Shannon, C.E. (1950): Programming a Computer for Playing Chess,

Philosophical Magazine, Vol. 7, No. 41, pp 256-275.

Siklossy, L. Simon, H.A. (1972a): Some Semantic Methods for Language

Processing, Representation and Meaning, Simon, Prentice Hall.

----(1972b): Natural Language Learning by Computer, Representation and

Meaning., Simon, Prentice Hall. Simon, H.A.,

Siklossy, L. (1972a)} Representation and Meaning: Experiments with

Information Processing Systems. Prentice Hall.

 ----(1972b): On Reasoning About Actions, Representation and Meaning,

Prentice Hall.

Simmons, R.F. (1962): Answering English Questions by Computer: A Survey,

CACM, Vol. 8, pp 53-70.

----(1969): Natural Language Question-Answering Systems: 1969, CACM, Vol.

13, No.1, pp 15-30.

----(1972): Generating English Discourse, CACM, Vol. 15, No. 10.

286

Slagle, J. (1965): Experiments with a Deductive Question-

Answering Program, CACM, Vol. 8, pp 792-798.

Slobin, D.I. (1971): Psycholinguistics, Scott, Foresman & Co. Spencer-Brown,

G. (1969): Laws of Form, Lowe and Brydone.

Stansfield, J.L. (1972): PROCESS 1: A Generalisation of Recursive Programming

Languages, Bionics Research Report No.8, School of AI, Edinburgh

University.

Sussman G.J., Winograd, T. (1970): Micro-Planner Reference Manual, MlT AI

Memo No. 203.

. ----McDermott, D.V. (1972): Why Conniving is Better Than Planning MIT AI.

Memo No. 255A

Tan, S.T. (1972): Representation of Knowledge for Very Simple Pawn Endings

in Chess, School of AI Memo MIP-R-98, Edinburgh University.

Thompson, F.B. (1966): English for the Computer. Proc. AFIPS 1966 Fall JCC

Vol 29, Spartan Books, New York.

Thorne, J., Bratley, P., Dewar, H. (1968): The Syntactic Analysis of English by

Machine, MI 3, Michie, Edinburgh University Press.

Turing, A.M. (1950): Computing Machinery and Intelligence, Mind, October,

1950, Vol. 59, pp 433-460.

Vigor, D.B., Urquhart, D., Wilkinson, A. (1969): PROSE - Parsing Recogniser

Outputting Sentences in English, MI 4, Michie, Edinburgh University

Press.

Vygotsky, L.S. (1962): Thought and Language, MIT Press.

287

Weizenbaum, J. (1966): ELIZA - A Computer Program for the Study

of Natural Language Communications Between Man and Machine,

CACM, Vol. 9, No.1, pp 36-45.

----(1967): Contextual Understanding by Computer, CACM, Vol. 10, No.8, pp

474-480.

Winograd, T. (1969): PRO GRAMMAR: A Language for Writing Grammars, MIT

AI Memo No. 181.

----(1971): Procedures as a Representation for Data in a Computer Program for

Understanding Natural Language, MIT Ph.D. Thesis.

----(1973): A Procedural Model of. Language Understanding, Computer Models

of Thought and Language, Schank and Colby, W.H. Freeman.

Wittgenstein, L. (1922): Tractatus Logico-Phi1osophicus, Routledge & Kegan

Paul.

Woods, W.A. (1967): Semantics for Question-Answering Systems, Aiken

Computation Laboratory Report, Harvard University.

----(1968): Procedural Semantics for a Question-Answerer Machine, Fall JCC

1968.

----(1970): Transition Network Grammars for Natural Language Analysis,

CACM, Vol. 13, No. 10, pp 591-603.

Zobrist, A.L.,Car1son, F.R. (1973): An Advice-Taking Chess Computer,

Scientific American, Vol. 228, No.6, pp 92-105.

