
 

 

 

A CONVERSATIONAL PROBLEM SOLVING SYSTEM  

REPRESENTED AS PROCEDURES WITH  

NATURAL LANGUAGE CONCEPTUAL STRUCTURE  

 

Laurence Thomas Shafe  

 

Ph.D. Thesis  

 

Queen Mary College  

University of London  

 

 

1976  

 



 
1 

ABSTRACT 

PIDGIN is a conversational computer programming l anguage with a  

structure that facilitates the construction of computer systems that  accept 

statements, answer questions and obey commands in natural  language. It also 

incorporates a deductive problem -solving capability  to enable such systems to 

solve non - t rivial application problems.  PIDGIN is intended to form a base for 

natural language problem -solving  systems that can be used directly by the 

people with the problems, for  example, designers, managers, engineers and 

scientists.  

Because any system constructe d using PIDGIN consists entirely of  

PIDGIN statements it may be conversationally updated to alter fundamentally 

its capabilities within the limit of the basic PIDGIN primitives. It also enables 

the system to answer questions about its own  structure and wor kings and so 

assist the user to improve its capabilities.  By working with the system in this 

way the user should be motivated to  teach the system new heuristics for 

improving its performance.  

The syntax of PIDGIN is based on the representation language  

dev eloped by R. Schank and the semantics on the PLANNER language of  C. 

Hewitt. PIDGIN incorporates some novel and powerful programming  features 

such as success - failure backtracking; meaning - invoked rules;  meaning 

restricted variables; the ability to specify t he requirements  and results of any 

command; the ability to generate programs automatically using this 

information; and the ability to generate automatically knowledge about the 

system's workings.  

The design of PIDGIN has been worked out in detail and a sub set  of the 

language has been implemented using the programming language  POP-2. The 



 
2 

limitations and possibilities of PIDGIN have been investigated by 

working through the design of a chess endgame system,  and the translation 

between English and PIDGIN has be en investigated  and PIDGIN equivalents for 

many semantically difficult English constructions have been worked out.  



 
3 

ACKNOWLEDGEMENTS 

I would like to thank my supervis or Dr. Alan Bond and my former 

supervisor Professor Peter Landin for allowing me to develo p the ideas  in this 

thesis.  

I am indebted and deeply grateful to Dr. Tom Westerdale for cultivating 

my initial enthusiasm and for helping me to unify my evolving ideas by long 

and painstaking discussion.  

I am grateful to Professor Donald Michie for enablin g me to  visit the 

School of Artificial Intelligence at Edinburgh University  and for suggesting the 

chess endgame problem. I would further like  to thank Dr. Sou Tan for providing 

me with one of his chess endgame  programs.  

I am appreciative of the help given  to me during 1974 by  Dr. Eric 

Wagner and of the continual help and support maintained by  Dr. Rod Macbeth, 

Dr. Ken MacCallum and David Mott.  

Finally, I would like to thank all those authors whose books  and articles 

have been the source and inspiration of m y work, especially  R. Schank, T. 

Winograd, W .V.O. Quine, L. Wittgenstein, G. Spencer Brown  and P.M. Roget.  

And Val , for putting up with it for so long.  

 



 
4 

CONTENTS 

CHAPTER 1 INTRODUCTION  

 1.1 Outline  

 1.2 A History of Question -Answering Systems  

  1.2.1 Quil lian's Semantic Memory  

  1.2.2 Schank's Dependency Representation  

  1.2.3 Winograd's Procedural Deep Structure  

  1.2.4 Abelson's Belief Structures  

CHAPTER 2 PIDGIN -  A REALISATION LANGUAGE  

 2.1 The PIDGIN Language  

  2.1.1. The Strict PIDGIN Language  

   A. Associative Backtrack Computer  

   B. Strict PIDGIN Syntax  

  2.1.2 The Input PIDGIN Language  

  2.1.3 Examples of PIDGIN  

 2.2 The PIDGIN System  

  2.2.1 The Components of the System  

   A. Associative Backtrack Computer  

   B. PIDGIN  

   C. Translator  

   D. Know ledge Base  

  2.2.2 The Initia1isation of the System  

   A. Defining the PIDGIN System  

   B. Defining the English Translator  

   C. Creating the Knowledge Base  

 

 



 
5 

 

 

  2.2.3 The Construction of the System  

   A. The Processor  

   B. The Memory  

    1. Immediate Me mory  
     2. Long - term Memory  

   C. The Translator  

 2.3 The PIDGIN Concepts  

   A. The Connectors  

    1. SUGGEST  
     2. ENABLE  

     3. PRODUCE  
     4. CAUSE  
     5. THEREFORE 

     6. THROUGH  
     7. WHILE  
     8. IF  

   B. The Acts  

    1. BE  

     2. BECOME  
     3. COGITATE  
     4. DO 

     5. IDENTIFY  
     6. MOVE  
     7. PASS  

     8. PERCEIVE  
     9. TRANSFER  
     10. TRANSMIT  

   C. Actors  

    1. Entity and Group Actors  

     2. Quantifiers  
     3. Attributes  
     4. Specifiers  

   D. Modifiers  

   E. Combini ng Concepts  

 

 



 
6 

 

 

 

 2.4 The PIDGIN Statement  

  2.4.1 Assertions, Questions and Commands  

  2.4.2 Substitution Rules  

   A. The Matcher  

   B. Actor Matching  

    1. Combination of Actors  
     2. Quantifier Matching  
     3. Attribute Matching  

     4. Specifier Ma tching  

   C. Modifier Matching  

   D. Binding Statements  

  2.4.3 Deduction  

  2.4.4 Problem Solving  

   A. Notation  

   B. Scheming and Planning  

  2.4.5 Teaching and Learning  

CHAPTER 3 EIKASIA -  A PIDGIN BASED CHESS SYSTEM  

 3.1 A History of Chess Systems  

 3.2 A Description of the Endgame Problem  

 3.3. PIDGIN and the Endgame  

   A. PIDGIN Particular Extensions  

    1. Chess Concepts  
     2. Board States  
     3. Board Actions  

     4. Game Playing  

   B. A Typical Endgame  

 



 
7 

CHAPTER 4 THE TRANSLATION OF A SUBSET OF ENG LISH  

 4.1 Introduction  

 4.2 The Analysis of English  

  4.2.1 The Analysis Process  

   A. Interna1isation  

   B. Explication  

   C. Analysis  

  4.2.2 Word Analysis  

   A. Divided Reference  

    1. Mass Terms  
     2. General Terms  
     3. Singular Terms  

     4. Com posite Terms  

   B. Ambiguity and Vagueness  

  4.2.3 Sentence Analysis  

   A. Predication  

   B. Identity  

   C. Time  

   D. Amb iguity  

   E. Opacity  

  4.2.4 Examples of Analysis  

 4.3 The Synthesis of English  

   A. Generating Statements  

   B. Translating Statemen ts into English  

 4.4 Conversation  

CHAPTER 5 SUMMARY 

 

 

 



 
8 

 

 

APPENDIX I  IMPLEMENTATION  

   A. ABC Implementation  

    1. The ABC Primitives  
     2. The ABC Driver  
     3. The MABL Assembler  

   B. The PIDGIN Implementation  

APPENDIX II  THE KNOWLEDGE BASE  

   A. Pri mary Knowledge  

   B. General Knowledge  

   C. Specialist Knowl edge 

   D. The Dictionary  

APPENDIX III  BIBLIOGRAPHY  



 
9 



 
10  

CHAPTER  1  INTRODUCTION  

1.1. Outline  

The world confronts us with a series of increasingly complex problems. 

Computers are helping us to solve t hese problems by taking  over more and 

more of the mundane clerical work. Because of their  speed, accuracy and 

efficiency they enable repetitious and tedious  clerical work to be handled 

automatically. But computers can also be  used to manipulate complex pat terns 

and because of this have been used  to model structures and control and 

optimize processes, all of which  previously required skilled personnel. This is 

because much time and  effort has gone into the precise, formal solution of each 

of these  problems.  

Research is being done into the way in which complex problems  can be 

solved by computers. A major part of AI (Artificial I ntelligence)  research work 

has been involved with this type of investigation. One  particular branch of the 

investigation is concerned with creating a  computer system which understands 

natural languages, such as English.  Achievements in this area would have many 

applications, for example:  

i)  If computers "understood" English they would become available  to 

a far wider range of users, such as managers and designers,  people 

without the time or inclination to learn a conventional  programming 

language.  

ii)  People would be able to help computers solve difficult problems  by 

interacting with them in some natural language.  

iii)  The linguistic natur e of much information suggests many 

applications for computer programs that understand language. For  



 
11  

example, information retrieval, index construction, machine  

t ranslation, précis  writing and report writing.  

iv)  Voice communication with computers would be  of benefit in many 

applications especially if the person did not need to learn a special 

language.  

v)  Language itself is one of the most complex of human abilities  and 

investigating its structure may help us understand more  about the way 

the human brain w orks.  

This thesis is concerned mostly with the first two points above.  

It has long been known that the straightforward approach to the  

solution of complex problems, such as chess playing, immediately comes  up 

against what is called the "combinatorial explo sion". This is the  uncontrollable 

increase in the time the computer must take to investigate  all the possibilities 

of each new step. For example, if a chess program  tried to examine ten 

different moves for 20 moves ahead, and each move  takes one micro -second to 

analyse, then it would take about 10 million  years to make a single move. One 

solution to this problem has been  to find ways of rejecting most of the 

possibilities. For example, if  only six moves ahead were considered the above 

chess program would ne ed only one second to make a move. The rules used to 

limit the search  are called "heuristics". Professor Sir James Lighth ill  (1973) 

states:  

" It is important to understand the meaning attached  to this adjective 

'heuristic ' which increasingly  permeates the A rtificial Intelligence literature:  it 

means that the program stores and utilises a  large amount of knowledge 

derived from human experience  in solving the type of problem concerned. " 



 
12  

It is clear then that the investigation of methods for 

improving the  stora ge and utilisation of human knowledge is important to AI. 

The more human knowledge that can be incorporated in a program the more  

the combinatorial explosion can be curtailed and the better the program's  

performance will be. Thus it is important to find be tter ways of  allowing humans 

to communicate their knowledge and experience to  computer programs.  

We are used to communicating this information to others using  our 

natural language. When this type of information needs to be  communicated to 

computers, howeve r, it must first be translated into  a computer language. If 

computers could be programmed to extract such , i nformation from natural 

language then they could be taught the  heuristics necessary to cut down the 

combinatorial explosion when  solving complex pro blems.  

One approach to this problem is the investigation of computer  models 

of linguistic memory. M. Ross Quillian (1968) has proposed such  a memory 

model with a number of attractive features. It is simply  constructed with an 

appearance analogous to neural  networks, yet it  has a good inductive ability 

and ~ behaviour which corresponds with  human linguistic behaviour in areas 

such as word association. However,  Quillian's "semantic memory" is a static 

structure with no deductive  or planning capabilities. Afte r some initial attempts 

to construct  a more comprehensive system based on S. Lamb's stratificational 

grammar  plus networks analogous to those of Quillian, I abandoned this 

approach  in favour of a procedure oriented system similar to that of T. 

Winograd (197 1) . 

Winograd's system is a complete, working conversational system  that 

understands English concerned with a simple "world" containing  coloured blocks 

on a table, plus a crane for moving the blocks. The  system will accept new 

information about its world, a nswer questions  about the position of the blocks 



 
13  

and what is has done to them and  obey commands concerned with 

moving the blocks around. The idea of  setting up a question -answering system 

to investigate the problems  of language is not new, but the idea of precisely 

defining a "toy  world" to restrict the language without otherwise arbitrary 

restraints  and the methods he used to translate and store the assertions, 

questions  and commands were first brought together in his system. His system  

translates English into a tree structure using a syntax analyser based  on the 

ideas of systemic grammar developed by M.A.K. Halliday.  

This structure is then translated into the theorem -proving language  

PLANNER. Because the English is translated into PLANNER the full  power of  this 

programming language is available to help it make complex  deductions and 

create plans. However, Winograd's system is still  rigidly limited to its toy -world 

and any extension to this would  require substantial reprogramming. I hoped to 

simplify this pr oblem  by setting up a system that used the same language for 

the result of  syntax analysis, the deductive program and programming the 

system.  

C. Hewitt's PLANNER programming language (1972) is the deductive  

base and "deep structure" of Winograd's system bu t it was not designed  for the 

latter purpose. It was designed as a programming language to  enable people to 

write theorem -proving model -building goal -directed  programs. G. Sussman and 

others have objected to the way that PLANNER  leads the user into writing  

programs that thrash around for the solution  and they have defined the 

language CONNIVER to overcome these objections  by removing PLANNER's 

automatic backtrack control scheme and providing  the user with more primitive 

operators. I have defined a language which  takes another approach.  

The reason that PLANNER programs thrash is that the system does  not 

know what it is doing. One way to overcome this is to remove the  automatic 



 
14  

control and force the user to program it explicitly. The  approach that 

I have taken  is to provide the system with more information  about what it is 

doing so that the automatic control can stop itself  thrashing. This I did by 

basing a language upon the deep structures  of natural language in the form 

proposed by R. Schank. The essential  di fference between this approach and 

that of PLANNER and CONNIVER is  that the latter are programming languages 

designed for people whereas  the former is an implemen tation language for 

conversational systems.  An implementation language is a language designed to 

simplify the  problem of implementing some other language, in this case 

English.  It is not designed specifically as an easy language in which to program  

but as a language into which natural language may be easily translated.  

However, it is not just a sta tic data -structure like Quillian's  semantic memory or 

Schank's representation but a deductive goal -directed  procedural language like 

PLANNER. 

R. Schank has been refining a representation for the deep structure  of 

natural language for a number of years, tog ether with a translation  scheme 

based on Conceptual Dependency theory. This theory was developed  by Schank 

as a computer orientated approach to the problem of natural  language analysis 

and translation. He claims the bulk of what people  talk about can be re duced to 

his representation. It therefore seems  like an ideal base upon which to build a 

conversational system. I  planned to design a language with a PLANNER - like 

control structure"  intelligently" directed by a data -base constrained to Schank -

like  deep str uctures. This initial language was called Conceptor. Conceptor  was 

similar to PLANNER but the patterns were not arbitrary lists but  conceptions. 

Conceptions were, roughly, one -dimensional representations  of Schank's C -

diagrams that is, unambiguous represen tations of the  meaning of natural 

language sentences . The introduction of syntactic and semantic restrictions on 

the patterns of PLANNER meant that  Conceptor had a meaning -directed data -



 
15  

base search, and a meaning -directed  invocation of procedures, and 

this  eliminated some of the thrashing  of the system by restricting the matches 

found.  

However, Conceptor was only a half -way stage. Although it had  a data -

base of conceptions the program that manipulated the data -base  was separate 

from that data -base and still  constructed from programming  features such as 

labels, gotos, if - thens and loops rather than natural  language features such as 

needs, schemes, states and plans.  This meant that the relations between 

conceptions could not be  manipulated by the program in th e same way that the 

conceptions  themselves could. Replacing these features involved abandoning 

the  distinction between the data -base and the program and replacing the  usual 

programming features by features related to natural language.  Many 

advantag es resul t from taking this step :  

The system may answer questions concerned with its own  workings. As 

the system  can explain its current problem -solving rules to the user it becomes 

much easier to modify  the system conversationally.  

Because the problem -solving syst em is programmed in the  same 

language that the E nglish input is translated into  a conversational user may 

extend and modify all parts of  the system, not just the data -base.  

The translation from natural language is simplified because  the artificial 

step of translating into a programming language  is removed.  

The system may be conversationally extended to cope with  new 

problems.  



 
16  

The generation of output is simplified because the system  

works in the deep structure of English. For example, all  its plans and acti ons 

are expressed in this deep structure.  

I have called the language incorporating these ideas PIDGIN.  PIDGIN 

has been implemented using the programming language ABC, a  language that 

was specially designed and developed for the task.  PIDGIN statements are 

either conceptions, with a syntax based on  Schank's conceptualizations, or 

relations between conceptions, called  thoughts. The way in which conceptions 

can be related together is  based on R. Abelson's (1973) description of how 

Schank's notation may  be exte nded to build belief systems.  However, Abelson 

does not consider how these relations may be made  to realise a computer 

deductive problem -solving system. I have approached  this problem by trying to 

implement a chess -endgame program called  EIKASIA by combini ng chess board 

predicates and action schemes using relations similar to those discussed by 

Abelson.  Before discussing the historical background to PIDGIN in more  detail I 

would like to more clearly define PIDGIN as a computer language.  The following 

types of lang uage can be distinguished :  

(1) Natural languages -  used for communication 'between people  for 

unlimited discourse.  E.g . English, Chinese.  

(2) Artificial languages -  specialised formal languages used for  precise 

description.  

(a) Logic languag es -  used for precise hu man communication.  E.g . 

predicate  calculus.  

(b) Computer languages -  used for man -machine communication.  



 
17  

(i) Programming languages -  used for algorithm  

communication.  E.g . Algol, LISP, PLANNER  

(ii) Representation languages -  used for data o r knowledge description.  

E.g . Schank's representat ion  

(iii) Realisation la nguages -  used for constructing knowledge 

algorithms, a combination of a  programming and a representation 

language  .e.g. PIDGIN  

The above division is not meant to be exhaustive or de finitive; for  

example, Esperanto is an artificial natural language, Algol is used  for human 

communication. It is merely meant to show the difference  between PIDGIN and 

other programming languages.  

Throughout this thesis when I talk about natural language I  am  

referring to that part of natural language that can be translated into  Schank's 

notation, and thus PIDGIN. The extent of this is discussed  by Schank (1969b). 

Similarly when English is referred to I mean that  subset of English that can be 

handled by PID GIN. Just how large this  subset is discussed in Chapter 4 and 

suggested by the examples  throughout the thesis.  

This thesis consists' of five chapters numbered from 1 to 5 and  three  

appendices, I to III. Chapters are divided into sections which  are numbered  and 

can be referred to by chapter.section number (e.g.  1.2, 3.2). Sections are 

divided into sub -sections which are numbered  (e.g. 1.2.1, 2.3.1); both sections 

and sub -sections will be referred  to as sections. Sections are divided into 

lettered divisions ( e.g.  A,  B,  C...) which are further divided 'into numbered 

parts (e.g. 1,  2,  3...).  Parts are divided into lettered segments (e.g. a,  b,  c...) 

and these into  pieces  (e.g. (i),  (ii),  (iii) ...). If a  sequence of short points is  

given in a section, part or di vision then piece numbering is used.  



 
18  

1.2 A History of Question -Answering Systems  

Attempts to set down algorithms for translating English into  logic have 

been made for hundreds of years. When computers were  developed it was 

natural to consider using them fo r this purpose,  but the first practical systems 

were not developed until about 1960.  During the last fifteen years many such 

systems have been developed.  There have been many different motives for 

developing these systems,  for example, some are more concer ned with the 

syntax analysis of  English, some with setting up deductive systems, some with 

the problem  of representing knowledge in computers, some with relating such 

systems  to other problems such as picture processing or information retrieval,  

and others  with building complete question -answering systems.  

In the brief historical summary below a number of these projects  are 

described, but although they are presented as separate self -contained  units 

occurring  at a particular time, it must be remembered that they  all ex tended 

over a number of years an d borrowed heavily from each other.  The summary is 

extracted from a number of sources but mainly  from the summaries of R.F. 

Simmons (1965,  1969), the Machine Intelligence  series (annually from 1967), 

the Proceedin gs of the International Joint  Conference on Artificial Intelligence 

(1969,  1971,  and 1973 ) and the  following three books:  

Computers and Thought, ed. Feigenbaum and Feldman, 1963  

Semantic Information Processing, ed. Minsky, 1968  

Computer Models of Thought a nd Language, ed. Schank and Colby, 
1973.  

One of the e arliest papers on question -answering systems was  by 

McCarthy (1959) and in 1960 one of his students, A.V. Phillips,  developed a 

working system. It was written in LISP and answered  simple questions in a 

subset of English. The sentences were analysed  by a simple context - free phrase 



 
19  

structure analyser into five constituents  -  subject, verb, object, place 

and time; everything else was ignored.  To answer a question it made a linear 

search through its data -base  of  stored sentences until a matching entry was 

found, which was then output.  If no match was found the programs gave up 

without attempting to make  any deductions. The system was in advance of 

some other systems  developed at the time in that it could add n ew sentences 

to its data -base  as it proceeded and thus it had a simple rote learning ability.  

One of the systems with a fixed data -base was developed by  B.F. Green 

(1961) at Lincoln Laboratories and was called BASEBALL as  it could answer 

questions about th e time, place, teams and score of  all the American League 

baseball games for one complete season.  Questions had to take the form of a 

single clause without logical  connectives, negation or certain comp lex re lations 

such as "most "  and "highest". The questio n was translated into a specification 

list which  was a pattern that could be matched against the built - in data -base  to 

find the answer. The system's dictionary contained the part of speech  and 

"meaning" of most of the words used to ask questions about base ball.  There 

was no interaction with the user but it did show that with a  limited field of 

discourse natural language questions could be  analysed and answered.  

J.L. Darlington (1963) developed a system, in COMIT, that took  a 

slightly different approach to t he problem. Darlington was interested  in 

translating English into symbolic logic and by this means solving  complex 

logical problems posed in English by using formal theorem provers.  His system 

read in typical elementary problems in logic and translated  the m into 

statements in symbolic logic whose universal truth was then  tested. The system 

was not interactive and the output was restricted  to simple built - in phrases or 

single word replies.  



 
20  

In the same year R.K. Lindsay (1963) published a paper 

describing  a m emory structure called inferential memory. A program written in  

IPL-V called SAD -SAM (Sentence Appraiser and Diagrammer, and Semantic  

Ana1ysing Machine) accepted sentences in Basic English (Ogden 1933)  from 

which it extracted information concerning kinship . This information  was then 

added to one of the family trees the system maintained. Although  the program 

was not interactive it was a simple matter to extract family  relationships from 

the tree to answer questions. The system was heavily  syntax orientated and 

made no use of the semantic information available  in the family trees to help it 

to analyse the input. Instead it first  tried to produce every possible parse tree 

and then it used the result  to build up the family trees.  

A. Newell and R.A. Simon had be en interested in computer problem  

solving since their work on the logic theory machine (Newell 1957) and  by 1963 

they had developed a program called GPS (General Problem Solver)  that tried 

to incorporate their theories on the pyscho1ogy of human  thinking  into a 

working problem solving program. Although it is not a  question -answering 

system it contains many ideas that were later incorporated in the problem -

solving part of many such systems.  

B. Raphael (1968) developed a system called SIR (Semantic  

Informatio n Retrieval), in 1964 that  was one of the first truly  interactive 

systems. If asked a question it could not answer directly  it asked the user 

questions until it could deduce the answer. It  accepted as input simple 

sentences in anyone of about twenty fixed  formats useful for expressing 

relationships between objects. The  relationships included set membership and 

inclusion, left - right position  and ownership. They were stored in a semantic 

network in which nodes  represented objects and labelled links the relati onships. 

Raphael  states as his primary interest the ability to store and utilize relational  



 
21  

information and for this reason his system ignored the problem of  

analysing general English sentences.  

In the same year D.G. Bobrow (1964) developed a system, calle d 

STUDENT that accepted and solved algebra problems posed in a restricted  

subset of English. The system was developed to investigate the problem  of 

building interactive problem solvers. It could be "programmed" with  a problem 

in English and would ask quest ions until it could solve the  problem. The internal 

semantic model was based on one relationship  (equality) and five basic 

arithmetic functions (from which others could.  be constructed). It was more 

advanced than many other systems in that  new transformati ons could be 

introduced into the running system.  At General Electric F. Thompson (1966) 

and J. Craig (1966) developed  a question -answering system called DEACON. 

Thompson investigated formal  languages as a basis for a question -answering 

base language and Cr aig  developed a working sys tem  based on these ideas. 

This system used "rings"  as the system's primitive data structure and had 

interpretation rules  defined as programs that manipulated these rings. 

Unfortunately the project  had to be abandoned through lac k of funds.  

Based largely on the ideas and theoretical work of McCarthy and  his 

"Advice Taker" and Raphael's SIR, J .R. Slagle (1965) developed a  deductive 

question -answering system called DEDUCOM (DEDUctive COMmunicator).  It 

could answer a wide variety of  questions and its deductive power  could be 

increased by telling it more facts. However, the input had  to be carefully 

prepared before giving it to DEDUCOM; the facts had  to be in the right order, 

some redundant facts were required and some  facts had to be  carefully worded 

to enable the correct answer to be  deduced.  

In 1967 M.R. Quillian completed his thesis on semantic memory.  As this 

will be described in Section 1.2.1 it will not be further  discussed here.  



 
22  

In 1962 R.F. Simmons developed a system, in JOVIA L, called  

SYNTHEX. This formed the basis of the first Protosynthex system which  through 

various stages of modification and extension became Protosynthex  III (R.M. 

Schw arcz and Simmons, 1970). The original system answered  questions using 

a children's encycl opedia . The text of the encyclop edia  was stored on magnetic 

tape and an alysed whenever a question was asked.  The system analysed 

questions by separating function words ("the", "do",  "is" etc.) from content 

words (nouns and verbs). The text was indexed  on c ontent words and the 

question's content words were used to retrieve  all relevant sentences from the 

encyclopedia. The sentences retrieved  were then reduced in number by 

comparing them more carefully with the  question. The text of the encyclopedia 

was not p re -analysed except for  the  word index and so the system spent a 

large part of its time analysing  the text. By 1970 the Protosynthex III system 

was a sophisticated  deductive question -answering system containing a 

formalized data  representation language base d on triples, a translator to and 

from  English and the formal language, and a powerful deductive and inference  

system.  

The system contains many ideas incorporated in PIDGIN. However, it  is 

not discussed in detail as it did not form part of the historical  development of 

PIDGIN because I did not read a detailed description of  Protosynthex until after 

completing the design of PIDGIN. It is thus  interesting to note that the 

proposals made for removing some of the'  limitations of Protosynthex III are 

those that form the basis of PIDGIN,  namely that the deep structure was not 

deep enough and a structure based  on Fillmore's case system was suggested; 

"how" and "why" questions could  not be answered and a system for 

automatically adding to the data -base  was suggested . Also the system ran into 

the combinatorial explosion  with large data -bases and to try to solve this , a 

basic unit larger  than the triple was suggested together with a "partitioned" 



 
23  

data -base.  PIDGIN has a deeper deep structure based on Schank's 

which in turn  incorporated an improvement of Fillmore's case system. PIDGIN 

does  automatically add information to its memory when it answers questions  

and makes plans and this information can be used to answer "how" and  "why" 

questions. PIDGIN a lso incorporates the  two sugges tions for  reducing the 

problem of the combinatorial explosion.  

By 1969 Bursta1l and Ambler (Ambler 1969) had developed a  system 

at the Department of Machine Intelligence and Perception,  Edinburgh 

University, called QUAC (Question Answerer C). It  was a  deductive system that 

accepted sentences stating a relation between  tw o objects and between other 

relations. New relations could also  be defined in the system. It accepted 

sentences in restricted English  and extracted their meaning, and it could als o 

generate true sentences  about the objects it had been told about. It was 

written to develop  the ideas of Raphael (1968) but still suffered from a lack of 

generality.  The internal model used by both became too specia1ised though 

Jinich  (1971) developed th e system in a number of interesting ways.  

Vigor (1969), also at DMIP, developed a system which, although  it was 

syntax rather than semantic based did adaptive1y improve its  language 

capability by conversation. Initially the program has a  dictionary contain ing 

about 100 words and six relations. From sentences  read it increased the size of 

its vocabulary and the range of sentence  forms handled. It was originally 

developed from a program called  GASP. GASP was a hierarchy of subroutines 

that returned words in c ertain  classes, e.g. noun -abstract. It was extended and 

combined with an  English parser called SPUD (Bratley, 196$). SPUD was a 

dependency  grammar parser. Words are divided into classes -  binding (bound 

or  loose), determinacy (d eterminate or  recursive) and  negative dependency  

(global or local), and these classes were used to determine where a  word could 



 
24  

occur in a sentence. The program reads in pieces of text  to build up 

its memory structures and then randomly generates English  sentences from 

these structur es. The sy stem is thus not really  interactive. However, it was 

possible to "converse" with it in so far  as when the sentence was output the 

user could score the result to  modify the system's future behaviour.  

In the last five years, from 1970, the work of Schank and Winograd  is 

of most importance to the design of PIDGIN, and both of these are  discussed in 

the next section. Schank's work has been associated to  some extent with the 

belief systems developed by Colby (1969a, 1969b,  1973). Colby's system was 

ori ginally closely related to J. Weizenbaum's  ELIZA (1966) conversational 

system. Both of these systems attempted to  carryon a conversation b y always 

keeping the initiative  that is by  always asking questions and never answering 

them. They did this by  recognis ing key words and phrases in the user's replies 

and then they  used these to generate related questions. Colby went on to 

extend his  system to incorporate his theories about neurotic human behaviour.  

The above computer systems  cover the major part of the wo rk  that has 

formed the basis of the structure of PIDGIN. However, a  wide range of other 

work motivated the overall design philosophy  behind PIDGIN. Of this other 

work the most notable is that done in  the philosophy of language by L. 

Wittgenstein (1922), W.V.O. Quine  (1960), M.J. Cresswell (1973), and R. 

Montague (1969, 1970 and 1973).  This work attempts to describe a logical 

notation equivalent to  natural language in order to explicate certain difficult 

problems that  arise in natural languages. It is of mos t use in relation to PIDGIN  

in the way that certain semantic problems are brought out and discussed  

because it is important that question -answering systems do not fall  into the 

associated traps. However, a logical notation is not a  programming language 



 
25  

and  the solutions proposed are therefore difficult  to assimilate  

directly; they can at best act only as guide lines.  

Other related work has been done in the field of the psychology  of 

language (Carol1 1964, Slobin 1971, Piaget 1929), problem solving  (Po1ya 

19 45), human communication (Chapanis 1975), linguistics (Chomsky  1968, 

Lamb 1966), the physiology of the central nervous system (Hebb  1949, 

Geschwind 1973) and computer models of memory and cognition  (Hunt 1973, 

Becker 1973).  

1.2.1 Quillian's Semantic Memory  

Quillian (1968) showed how knowledge might be stored in a single  

interconnected network that he called "semantic memory". It enables  the 

association between semantically related concepts to be discovered.  This 

provides a simple form of inference and is al so used by the system  to control 

the parsing of English into the network.  

Semantic memory was later incorporated into a system called  

Teachable Language Comprehender (Quillian 1969) that translated a subset  of 

English into the semantic memory representatio n. Teachable Language  

Comprehender, or TLC, regards each input sentence as a specification  for 

assembling the parts referred to in the sentence. These parts are  called units 

by Quillian and they correspond to what are called concepts  in PIDGIN. TLC is 

not a question -answering system;  it is a mechanism  for assembling new units 

of semantic memory from English sentences.  The simple syntax used by TLC 

during its analysis is secondary to the  main mechanism for assembling new 

units from old. Thus the analysis  is semantically rather than syntactically driven 

and it makes use of  extensive implicit information. TLC is historically related to 

TEMPO (Thompson 1966) and SYNTHEX (Simmons 1962). It does not deal with 



 
26  

a restricted environment like Bobrow (1964), Raphael (1 968) or 

Winograd's  (1971) system but attempts to handle general unrestricted English  

sentences. In many respects TLC is similar in scope and purpose to  Schank's 

system (1969b).  

The TLC memory consists of facts and form tests. A fact is either  a unit 

or a p roperty and a form test is a syntax routine that recognises  simple phrases 

and specifies what action to take if found. A unit  corresponds to a concept, 

noun phrase or sentence and in semantic memory  it consists of a superset 

pointer plus zero or more delim iting properties.  This idea of a concept being 

defined by a suitable restriction of a  sup erset concept is also used by PIDGIN. A 

property is an attribute  value pair plus zero or more refining properties. Units 

can also be  modified by quantifiers and define d as sets of other units. The 

memory  is thus one big interconnected network in which each unit is connected  

to its superset unit and, via properties, to modifying units.  

Because the units are interconnected it is often possible to trace  a path 

between two units along the superset and property pointers.  Two units are 

related if a path exists between them and by considering  the properties al ong 

that path they can be semantically related. So  given any two units they can be 

semantically related by looking for a  path between them. This is done in TLC by 

a breadth first or parallel  search from each of the units. Each unit reached is 

"tagged" and the  first common (intersecting) unit found gives the shortest path 

and thus  the "closest" semantic link between them.  

To analyse a piece of text each word in the text is associated  with a list 

of all of the words' meanings plus possible anaphoric  ("backward") references. 

A semantic link is then looked for between  each of the meanings of the words 

close together in the text.  If a  link is found and a form test succeeds then the 

part of memory through  which the link passes is copied as part of the new unit 



 
27  

being generated.  However, if any superset pointers are involved then 

the particular values  are copied rather than the super set unit. This corresponds 

to the way  that a question and statement may be matched in PIDGIN even 

though one  involves concepts that are supersets of those in the other.  

The form tests are introduced to check that the syntax agrees  with the 

semantic link fo und. For example, though "lawyer t s wife"  and "wife's lawyer" 

are both connected by the fact that a person may  employ a lawyer the form 

tests associated with "employ" only allow the  second syntactic arrangement to 

agree with such a semantic link.  Each att ribute and value in the system is 

associated with a set  of form tests which pass or fail possible semantic links by 

checking  the syntax (word order, inflexion, agreement and so on between the  

words involved). The form tests are applied one by one until one  is found that 

succeeds. If a form test only fails because of intervening  words it is 

provisionally succeeded and if the intervening words are  all later incorporated in 

the analysis  then the form test succeeds.  

When the analysis is complete the original se ntence will have  been 

transformed into a single unit made up of copies of parts of the  memory with 

new units substituted. The new unit created is linked  into the complete 

semantic memory and can then be used to form part  of a later new unit. TLC 

regards a sentence as being about the subject  of the sentence. The subject 

forms the basis of the new unit and  determines the superset link of the whole 

new unit. The subject is  then modified by properties such as the verb group, 

qualifying clauses,  adjectives and s o on. Some of these  properties are further 

modified , for example an adjective  may be modified ("light blue")  and a verb 

may  be modified by an adverb ("walk quickly"). In PIDGIN the subject and  verb 

are regarded as together forming the basis of the structur e and  each of these 

may be further modified as well as the combination of  the two being modified.  



 
28  

TLC might g enerate the following unit from :  

A boy is walking to the park.   

 

Whereas PIDGI N would generate the conception  

A BOY TRANSFER SELF A PLACE THE PARK . 

TLC regards the sentence as being about "boy", in fact as  specifying a 

new unit which is its old "boy" unit modified by the  property of "walking", which 

is further modified by "in park". PIDGIN  regards the sentence as being about 

"boy transferring" (expl ained  later) and it handles the prepositional clause by 

incorporating it in  with the particular case system it associates with the act 

TRANSFER. TLC handles the sentence in a very uniform manner. PIDGIN uses a 

more  complex representation based upon Schank' s work and also upon the  

requirements that a conception is a program statement that can be evaluated  

for its effect upon the system. The advantage of the more complex  

representation is mentioned by Simmons (see last section).  

1.2.2 Schank's Dependency Repr esentat ion  

Schank developed Hay's conceptual dependency grammar into a  

linguistic theory organized from a computational point of view. Linguistic 

utterances are regarded as devices used by the utterer to guide  the formation 

of a conceptual structure in the  receiver by modifying  and guiding expectations. 

Schank states that there exists a conceptual  base into which utterances in 

natural language can be mapped. He proposes  a syntax and semantics for such 



 
29  

a conceptual base and describes mapping  rules for genera ting 

conceptual structures from language utterances and  vice -versa. The conceptual 

base is claimed to be language independent  and meaning based, that is to say 

any sentences, in any language, with  the same meaning, can be translated into 

the same conceptua l structure  and any two sentences with a different meaning 

can be translated into  different structures. Further, it is claimed that a 

conceptual base  containing a small, fixed number of "acts" is sufficient to allow 

the  meaning of all the verbs in natural language to be expressed.  

Schank's system will be described starting with his idea of a  concept, 

how concepts may be combined and how utterances may be translated into 

such structures.  

a. Concepts  

The basic structure in the conceptual base is called a conc eptualization. 

This consists of concepts and certain relations between  the concepts. There are 

three types of concept, a nominal, an action,  and a modifier. Nominals can be 

thought of by themselves without  needing to relate to other concepts, i.e. a 

word t hat is the realization  of a nominal concept tends to produce a picture of 

that real -world  object in the hearer's mind. For this reason they are also called 

PPs (Picture Producers), for example, man, book, John and London are all PPs.  

An action is what a PP  can be said to be doing. Schank has  reduced the 

actions required in the conceptual base to less than  twenty.  These actions are 

called ACTs and the reduction and rationalization  of the ACTs is one of the most 

important features of Schank's system.  

A modifi er is a concept that makes no sense without the PP or  ACT to 

which it relates. It describes the PP or ACT to which it relates  ~d serves to 



 
30  

specify an attribute of the nominal or action. Modifiers  of nominals 

are called PAs (Picture Aiders) and of actions, AAs (Action  Aiders) . 

In computer systems based on his theory Schank suggests a number  of 

"files" of information that should be kept in order to produce a  working system. 

One of these files is called the semantic information  file; this contains 

information about which concepts may modify which  other concepts. For 

example, the concept "pebble" might be associated  wi th  the information that it 

is, by definition, a physical object that  is round in shape;  usually smooth 

textured and may be modified by the  attribu tes of colour, size and consistency. 

The semantic file is used  to check concept combination during translation to 

help disambiguate  a sentence and during generation to restrict the 

conceptualizations  generated.  

The concepts are language independent meaning  units and to explain  

th e differences that exist between the meanings of words in different  languages 

Schank develops the ideas of under and over -naming. For  example, "mare" is 

the over -named variant of "female horse" and "flat  rectangular surface raised 

from the ground by four legs" is the under  named variant of "table". He 

suggests that similarity can be reduced  to equali ty, between PPs, in so far as 

two PPs refer to the same picture.  For example, "mare" and "female horse" are 

the same concept as both  ref er to the same picture. So, if there are 40 words 

for different  types of rice in one language and only one word in another then 

the  language independent conceptual base for the first would have 40 named  

concepts for rice while the second would have just on e. However,  both systems 

would implicitly contain the same range of rice types  because this depends not 

upon what concepts are named but on the allowed  concept modifiers and the 

allowed concept combinations. Thus if both  systems contain the information 

tha t rice can have texture, and possible  textures are smooth, gritty, course and 



 
31  

rough, then both contain the  implicit concepts "smooth rice", "gritty 

rice" and so on. By including  all the possible modifiers of rice possibly hundreds 

of implicit rice  concepts  are contained in both systems. Most of these will be 

unnamed,  for example :  

 "Very  small, slightly gritty, soft, yellow rice".  

Of course different particular conceptual bases differ in the  range and 

size of their information files but this is the essence o f a conversational system, 

i.e., one that learns new concepts and increases  its range of conceptual 

knowledge through discourse.  

b. Conceptualizations  

The conceptual categories (PP,  ACT, PA and AA) can relate in specified  

ways to each other. These relation s are called dependencies and are  the 

conceptual analogue of the syntactic dependencies described by Hays  and 

others. A dependency relation between two concepts indicates that  the 

dependent concept predicts the governing concept. A dependent must  have a 

governor. The fundamental base of any conceptualization (except  for certain 

special cases) is what is called a two -way dependency link  between the main PP 

and ACT. From these two inter -dependent concepts  all the other dependent 

concepts of the conceptualizat ion hang. Associated  with the act will be a case 

dependency which can be either objective,  recipient, directive or instrumental 

and will link one or more PPs to  the ACT as conceptual cases. Any PP may be 

modified by a PA or by the  relation of containment, location, or possession to 

another PP.  

The conceptual act cases are the basic predictive mechanism  available 

to the conceptual processor, and dialogues are often partly  concerned with 

filling in the case slots in a conceptualization.  



 
32  

Conceptualizations can  relate to other conceptualizations by  

dependencies called conceptual relations. The most important of these  is 

causality as this is present in the conceptual structure representation  of many 

natural language utterances in which causality is not explicitly  mentioned. For 

example, verbs such as "kill", "fly", "comfort", and  "prevent" in English.  

Schank claims that his conceptualizations, with their small  fixed 

number of ACTs, are sufficient to represent adequately the information 

underlying English verbs. Si nce there are thousands of verbs  and only a few 

ACTs this amounts to a tremendous saving, especially  when considering the 

inference rules that must be associated with each  one.  

c. Natural Language Analysis  

The translation of natural language into conceptua lizations, as  

described by Schank, takes place at two levels, the conceptual and  the 

sentential. The conceptual level is concerned with creating syntactically well -

formed conceptualizations incorporating all the information  from the utterance  

and the sente ntial level is concerned with the  particula r syntax rules of the 

natural language being translated. The  words of the utterance are used as 

indicators of the top - level structure  to be searched for. The translator thus 

combines a bottom -up with a  top -down pa rser and avoids spending a great deal 

of time looking for  combinations of syntactic categories that do not exist and 

looking to  see if what is wanted at the conceptual level is present at the  

sentential.  

At any point in a translation the system will be wor king at a  number of 

levels of prediction :  



 
33  

i)   Syntax: at the conceptual level the rules determine 

what  concepts are required and at the sentential level what part of 

speech  is allowed at any point.  

ii )   Context: the preceding part of the sentence and the p receding  

sentences limit what is expected at any point in terms of what  

particular verbs or nouns are most likely. A similar prediction can  be 

made at the conceptual level.  

iii)   Conversational: because people talk for a reason and because  the 

hearer is us ually aware of the reason it is possible for prediction  to be 

made about large parts of sentences. This fact is usually taken  into 

account by the person speaking who will truncate an otherwise  lengthy 

utterance.  

iv)  World view: as well as information assoc iated with a particular  

conversation, each individual also has knowledge of the situation  within 

his entire view of the world. This includes the speaker's  knowledge 

about the hearer and vice -versa. This information is used  by hearers in 

order to predict wh at is likely at any point in an utterance and by 

speakers to shape and control their utterance.  

All this information and more should be used by a natural language  

translator to help it predict and thus disambiguate an utterance and  also to 

enable it to fil l in any information assumed and omitted by  the speaker. This is 

done by Schank's translator by making use of the  system's memory of past 

conceptualizations and rules about likely  intentions and behaviour.  

The translator works by using surface level heuris tics to help  it find the 

main verb and the subject. From this a verb -ACT dictionary  allows the system 



 
34  

to set up a rudimentary conceptual structure which  can be used to 

direct further analysis.  

d. Conclusions  

Schank's conceptual dependency framework provide s a good base  for 

holding the meaning, or deep structure, of natural language utterances  in a 

computer conversational system. However, Schank's notation was  not designed 

to be interpreted and therefore suffers from some of the  disadvantages claimed 

by Wino grad to exist with such static systems.  The setting up of PIDGIN 

attempts to overcome this disadvantage by defining  a language plus an 

interpreter so that utterances can be translated  into procedures and thus take 

advantage of the benefits of doing this  as described by Winograd (1970).  

The main advantage of Schank's scheme is the rationalization of  

conceptual actions and their case dependencies. Reducing the number  of 

actions to below twenty allows a conversational system to be able to  

incorporate all the b asic actions and their associated 1nference rules  in an 

initial system and conversationally extend this base to include  more nominal 

concepts and more sentential level verbs and nouns.  

Unfortunately the interpretation of Schank's structures is not  well 

def ined and there are a number of omissions. PIDGIN attempts  to rectify some 

of these faults, first by defining its syntax clearly,  then by defining an 

interpreter and lastly by unifying and extending  the possible structures. Some 

of the main features of PIDG IN omitted  by Schank are the clear treatment of 

structures above the conceptualization (see Abelson, Section 1.2.4), a full 

treatment of relations  and properties, the inclusion of arithmetic expressions, a 

pattern  matching ability, the consistent treatment  of quantifiers including  scope 

rules, and the deeper analysis of concepts.  



 
35  

Schank's ideas have been implemented as a system called 

MARGIE (Memory, Analysis, Response Generation and Inferences on English, 

Schank  1973c), which includes an ana1yser that tran slates English into 

conceptualizations, and a generator that translates conceptualizations back  into 

English (Goldman, 1975).  

The existence of such an implementation obviates the need for a  

PIDGIN translat or implementation because there is a simple syntact ic 

correspondence between Schank's conceptualizations and PIDGIN statements.  

Of course, in order to demonstrate those features of PIDGIN not available  in 

Schank's system a complete translator for PIDGIN would be an extension  of 

Schank's translator but for a large part of the facilities it could  be essentially 

the same. However, because of the differences the design  of a PIDGIN 

translato r has been described in Chapter  4.  



 
36  

1.2.3 Winograd's Procedural Deep Structure  

The greatest influence in AI in the last few  years has undoubtedly  been 

the system designed and developed by T. Winograd. He brought  together many 

different techniques and implemented an impressive system  th at could 

remember information, answer questions "and obey orders concerning a 

simulated "toy world" of co1oured blocks, boxes and pyramids  on a table top.  

Winograd's system uses a parser that is based on the ideas  developed 

in Halliday's systemic grammar (1970). The parser is a program  in a language 

called PROGRAMMER, a language developed by Winog rad  specifically for the 

task. The parser does not work independently of  the rest of the system but can 

call upon any of the other parts to check  what it is doing as it goes along. For 

example, when each phrase is  formed complex deductions can be performed  to 

check that the phrase  is correct before continuing.  

Transformational grammar deals with a context - free base grammar  

over which transformation rules operate to produce the actual "surface  

structure". Systemic grammar works with a context - free tree but e ach  node of 

this tree may be associated with "features". These features  are, for example, 

"transitive", "question", or "major" and by their  use the context dependent 

aspects of natural language can be handled  in an economical way. Further, 

there is a high degree of correlation  between these features and the semantic 

interpretation of the constituents  th at exhibit them. The parser extracts the 

features by the use of  special routines that check agreement, word endings, 

word order and  so on. Context sensitive aspects are handled by special checks, 

for  example, the verb phrase routine might climb back along the parsing  tree to 

find the main subject in order to check that the subject and  verb endings are 

either both singular or both plural.  



 
37  

As the parse tree is b uilt up semantic routines are called to  

generate the PLANNER program that is equivalent to the parse tree produced. 

PLANNER is a programming language developed by C. Hewitt (1971,  1972) to 

enable goal -directed theorem -proving programs to be simply  written.  For 

example, if the noun group "a red cube" has been parsed  the tree formed is 

passed to the noun group semantic routine to produce  the corresponding Micro -

Planner (the implementation of PLANNER used  by Winograd, se e G.J. Sussman 

1970) statements :  

(THGOAL  (#IS $?Xl #BLOCK))  

(#EQDIM $?Xl)  

(THG OAL (#COLOR $?Xl # RED))  

The above program would fail of there were no blocks of equal 

dimensions and coloured red, otherwise it would succeed with the variable Xl 

bound to the first red cube found in the data -base. The  above piece  of program 

would form part of the complete procedure generated for a  sentence. For 

example, the question "How many red cubes are there"  could use the above 

program repeatedly to find every red cube and at  the same time keep a count 

of the numb er found. The imperative "Put  a red cube in the box" could use the 

same program to find a red cube  and then it could be moved into the box by a 

further piece of PLANNER  program. The assertion "I like red cubes" could 

generate the theorem  

(#LlKE $?X)  

with a  body which is the same as the above program. This would fail  if 

the object given to the theorem were not a red cube (e.g.  (#LlKE :PYRAMID)) , 

otherwise it would succeed.  

Winograd has taken the sophisticated data -base theorem -proving 

programming language PL ANNER as the structure in which the meaning of a 

sentence is represented. This structure is not a static tree structure but an 



 
38  

actual PLANNER program. By representing meanings as procedures 

Winograd argues that grea ter power and flexibility is obtained tha n with any 

static representation such as that of Schank. However, the advantage of 

Schank's representation is that it was designed around  the conceptual base of 

natural language whereas PLANNER was designed  as a theorem -proving 

language. It was to try to c ombine the advantages  of both these systems that 

PIDGIN was developed.  

Winograd developed the powerful parsing language, PROG RAMMAR, 

based on systemic grammar theory, in order to write a parser that could  

produce a parse tree for any meaningful English sen tence in the  vocabulary 

used. This parse tree then had to be translated into a  PLANNER procedure. By 

designing the meaning structure to incorporate  the underlying rules of natural 

language the parser can be driven by  the syntax of the meaning structure and , 

further, this meaning structure  can be built up as the parsing proceeds, word 

by word.  

Most question -answering systems, including Winograd's, generate  

output by a form of "slot -and - fi11er" technique. The system contains  various 

skeleton sentences into wh ich the answer or query is put.  Winograd's system 

uses a number of special rules to improve the form  of the output by the use of 

pronouns and word endings. Each type of  question has a model output 

statement into which the answer is put.  There are also a nu mber of built - in 

error messages to reject questions  that cannot be answered, and ambiguous 

and other ill - formed sentences.  The advantage of Schank's scheme is  that 

every possible legal conceptualization  can be mapped into an English sentence, 

whereas in Wi nograd' s system there is no attempt to map PLANNER back into 

English. Schank  discusses how random sentences may be generated within his 

system and  he goes on to say that to generate conversation it is necessary to  



 
39  

introduce motivation into the choices made . However, he does not  

describe how this might be done.  

PIDGIN generates a conception as an answer to a question, and  this 

conception is then mapped back into English. Consider an example  to compare 

Winograd's use of PLANNER with PIDGIN. Th e question : -  

Wha t is in the box?  

will be parsed by Winograd's system to form a parse tree which will  

then be translated into a PLANNER procedure that will contain a statement  of 

the form:  

(THGOAL (#IN :BOX $?Xl))  

The object found will then be slotted into a standard reply  suitably 

modified to distinguish it from all the other objects. If no object was found then 

a suitable "error" message would be output.  

PIDGIN would analyse the question into :  

AN OBJECT <IN BOX> ?  

and this question would then be evaluated to return say :  

PYRAMID <IN BOX>  

This then forms the basis of the reply.  

PIDGIN can be described by analogy with certain features of  PLANNER. 

In PLANNER there are a large number of primitives that  manipulate arbitrary 

patterns stored in a data -base. One of these  primitives  is "GOAL " (or "THGOAL " 

in Micro -Planner). This primitive  will succeed if the pattern which is its 

argument matches a pattern  in the data -base or if the pattern matches a 

consequent theorem and  then that theorem succeeds. This is the essence of the 

evaluat ion of  PIDGIN. Every PIDGIN statement either succeeds or fails when it 



 
40  

is evaluated. If it matches a statement directly or if it matches an  IF-

rule that succeeds then it succeeds; otherwise it fails. PIDGIN  statements can 

be conjoined or disjoined with oth er statements to form  programs in which the 

flow of control is determined by the success or  failure of its individual 

statements. A complete description of the  evaluation of a PIDGIN statement is 

given later but the above summary  serves as a useful guide t o the overall flow 

of control.  

In conclusion, Winograd's system is a PROGRAMMAR program that  

translates English sentences into PLANNER procedures that manipulate  a data -

base which is a description of the simulated toy -world. A  PIDGIN conversational 

system is a PIDGIN program that translates English  sentences into PIDGIN 

statements that manipulate other PIDGIN statements  that together form a 

description of the world.  

1. 2.4 Abelson's Belief Structures  

Whereas Schank describes the details of the structure of c onceptual  

dependencies, Abelson considers the relationships between them. Abelson  is 

interested in how conceptualizations can be put together to form  larger 

coherent systems. Schemes such as Schank's and Winograd's are  sometimes 

called "knowledge systems" because there can be little argument over the truth 

or falsity of the facts stored within the system.  However, when relationships 

between conceptualizations, such as purpose  and cause, are considered, 

disagreement may arise. Such systems are  therefore call ed "belief systems".  

Abelson distinguishes between three types of conceptualization,  which 

he calls "atoms", i. e. action atoms, state atoms, and purpose  atoms. He 

describes how these may be put together to form "molecules"  and how these 



 
41  

can be assembled in to "plans". Plans of two individuals  can be 

related as "themes" and these can be built up into complete  ideologies or 

"scripts".  

For the purpose of building a problem -solving system the complete  

range of Abelson's work is not required. However, his techniq ue for  assembling 

atoms into plans is directly applicable to building a chess  playing program and 

his higher level techniques for building themes  and scripts could be applied to 

constructing a chess program that played  with purpose to achieve certain state s 

by particular actions and which  could play with say aggression or care (themes) 

or possibly in a way  th at was related to the opponent's style. It must be 

remembered that  although the chess problem was mentioned above and this 

particular  problem is consid ered in more detail later it is not being studied as  m 

end in itself but only in so far as it is a well defined problem  th at is difficult to 

solve. This means that although the ideas presented  below are later applied to 

a particular chess endgame problem t hey were  added to PIDGIN with more 

general aims in view.  

A brief summary of Abelson's terms and techniques will be  given and 

then related to the specific requirements of a PDIGIN chess  system in order to 

show how they may be used in a practical system.  Abe lson bases his work on 

Schank's Conceptual Dependency Analysis with  minor changes to the notation 

for the sake of convenience within  Abelson's overall sys tem. Abelson calls 

conceptualizations, "atoms"  and distinguishes three types, A (action) atoms, 

which are Schank's  PP-ACT conceptualizations, S (state) atoms which are 

Schank's attributive PP -PP or PP-PA conceptualizations and P (purpose) atoms 

which  have the Schank representation :  



 
42  

Actor <=>  want  

  ¿ 

 Actor <=> Poss (X)  

These atoms can be assembled into pl ans. The simplest type of  'plan is 

called a molecule and it has the form:  

P -  A -  S 

where the S -atom is the state connected to the "want" of the P -atom,  

the A -atom is causally connected to the S -atom and the actor in the  A-atom is 

an agent of the actor in the P -atom. A molecule captures  the idea of an action 

undertaken in order to attain a goal desired by  the sponsor of the action.  

With each type of actor -action conceptualization of the "TRANS"  class 

(as described by Schank, 1973b) Abelson lists those state s that  must hold 

before or while the action is performed. For example, before  A can take X from 

B using Y three states must hold, B must possess X,  A must have access to Y, 

and A,  X and Y must be in close proximity.  These conditions can be simplified, 

for example, if the instrument Y  is A's hand and the object X is taken from a 

place rather than a person  then the only condition is that A and X are in close 

proximity.  

The simple P -A-S molecule can be extended to form a "serial  plan" (or 

"chain") by interposi ng alternating A and S atoms following  the initial P -atom. 

Then the final S -atom must be the "want" state  of the P -atom, each A -atom 

must be causally bonded to the following  S-atom, the actor in each A -atom 

must be either the actor in the initial  P-atom or  the agent of the actor in the 

preceding A -atom, and each  S-atom must "enable" the following A -atom. 

Networks may be built up  to form complex plans because an action may require 

a number of states  before it is enabled and one state may enable a number of 



 
43  

actions.  Abelson distinguishes fourteen types of linkage between 

atoms  in a network :   

i)   P - --  A Purposive action  The action A serves the 
purpose P.  

ii)  A - --  S Casual linkage  Action A causes the outcome 

S intended by the actor.  
iii) S - --  A Enablement  The state S enables action A.  
iv)  

        

Multiple enablers  All of states S 1...S n are 

required to enable action A.  

v)  

       

Multiple enablement  State S enables all of the 
act1ons A 1...A n. 

vi)  

       

Concurrent action  Actor with purpose P  
concurr ent ly undertakes 
actions A 1...A n. 

vii)  

       

Multiple 
consequences  

Action A causes each of t he 
intended consequences 

S1...S n 

viii)  

        

Alternative causation  S is caused by either A 1 or 

A2...A  

ix)    A -x-  S Casual blockage  Action A prevents state S  
x)     S -x-  A Vitiation  State S inhibits performance 

of A  

xi)   A ---  S Unavoidable 
consequence  

Action A causes state S, not 
intended by the actor  

xii)  A -x-  S Unavoidable blockage  Action A unwittingly prevents 

outcome S  
xiii) A ---  S1 
 S2 

Positive gat ing  State S 2 enables action A to 
lead to state S 1 

xiv) A -x-  S1 
 S2 

Negative gating  State S 2 prevents A from 
leading to state S 1 

All of the linkages can be combined to form a network, with the  

additional restriction that all networks must begin with a si ngle  leftmost P -atom 

and end with one or more rightmost S -atoms.  

If the atoms correspond to statements in a normal programming  

language then the above linkages correspond to the control structure.  It is 



 
44  

interesting to compare a network with a PLANNER progr am to 

contrast  the two ways in which plans are constructed. A comparison highlights  

the view expressed in this thesis that the program structure of a  conversational 

system should reflect the structure found in natural  language rather than that 

taken from p rogramming languages. For this  reason the control structure of 

PIDGIN is based on a scheme similar  to the above description.  

In PIDGIN a state can be specified as desired and if it is  connected by 

enabled actions to the current situation then a plan can  be constructed that 

consists of those  actions. Every action is associated  with a set of enabling 

states and if all these hold then when the action  is performed a new set of 

states will arise which will enable further  actions to be performed until the 

desired  state holds.  

Abelson goes on to consider how two plans can be combined into  a 

theme. A theme is a relationship between the plans of two actors.  One actor is 

either the agent, goal object or interested party of the  other actor's plan. Each 

actor has an  "at titude" (positive of negative)  towards the other and each is able 

to interfere with the other's plan  in a set number of ways. Depending on 

whether the actor's relationship:  is positive or negative a theme will be one of 

admiration, devotion,  cooperation, a lienation, betrayal, rebellion, antagonism, 

oppression  or conflict, plus a number of other related themes.  

Themes can be combined to form theme sequences or scripts. A  script 

is a network of themes with linkages analogous to those between  atoms in a 

plan. For example, the "romantic triangle" script runs:  

 



 
45  

And the rescue script might run:  

 

Abelson gives the script of the current Cold War (detente disregarded) 

based on a hypothesised belief system or ideology of what  he calls a Cold 

Warrior.  

PIDGIN has not been extended to contain primitives that correspond  to 

themes and scripts as from the point of view of the chess problem  these are 

simple and fixed. In chess the theme is conflict leading  eventually to 

oppression. The script is simple; for player A it woul d be:  

Schess  Ã Confl ict (A,  B) Ã Oppression  (A,  B)  

The chess ideology is simple and brutal. However, it might be  

interesting to postulate an ideology for say, the white king, involving  th emes 

corresponding to the interplay of all the pieces.  What is intere sting about chess 

is the nature of the theme of  Conflict. Abelson diagrams this as :  

 



 
46  

It might be worth while to consider the chess problem from 

this  point of view. Each side can carry out actions that either damage the  

position of the other side or preven t the other side from doing damage,  both 

from the point of view of the desired end state. Such a computer  program 

would need to consider its own plans, to hypothesise about its  opponent's plans 

and to consider how they interact.  



 
47  



 
48  

CHAPTER 2  PIDGIN -  A REALI SATION LANGUAGE  

2.1 The PIDGIN Language  

PIDGIN is a programming language into which natural languages,  such 

as English, may be easily translated. Thus corresponding to  every PIDGIN 

program there is some sequence of English sentences. The unit of a PIDGIN 

program is called a conception and this corresponds  approximately to 'a simple 

English sentence. Conceptions can be combined  to form what are called 

thoughts, as sentences can be combined in  English to form complex sentences, 

rules, suggestions and so on.  There are eight types of thought in PIDGIN, each 

associated with  a different conception connector. For example, the following 

PIDGIN  thought uses the IF connector to join a single conception to a rule  

consisting of two co nceptions joined by conjunction :  

A W OMAN <AUNT A PERSON 1> IF  

  THE WOMAN <SISTER A PERSON 2> AND   

  THE PERSON 2  <PARENT THE PERSON 1>.  

This corresponds to the English definition:  

A woman is the aunt of somebody if she is the  sister of another 

person who is the parent of  the first person.  

The a bove PIDGIN thought is given in a language called Input  PIDGIN. 

This is assembled by a program called the PIDGIN assembler  into the Strict 

PIDGIN language. Input PIDGIN is suitable for human  consumption and Strict 

PIDGIN for machine interpretation, for exa mple,  the above thought would be 

assembled into the Strict PIDGIN thought:  

<IF  [ 1 LTS 50 TRUE <EQUAL 123> MANNER PERIOD MOD ]  

 <BE <WOMAN <EQUAL 1> SUBJA  <AUNT <PERSON 1  

<EQUAL 1> ATTR SPEC>>>  

  [ 2 LTS 50 TRUE < EQUAL 123> MANNER PERIOD MOD ]>  

 ê<BE <WOMAN <E QUAL 1> SUBJA  <SISTER <PERSON 2  

<EQUAL 1> ATTR SPEC>>>  

  [ 3 LTS 50 TRUE <EQUAL 123> MANNER PERIOD MOD ] >  

 <BE <PERSON 2  <EQUAL 1> SUBJA  <PARENT PERSON 1  

<EQUAL 1> ATTR SPEC>>>  



 
49  

  [ 4 LTS 50 TRUE <EQUAL 123> MANNER 

PERIOD MOD ] >  

 ú 

>  

If the interpretation rules  given later are referred to it can  be seen that 

this PIDGIN thought will result in the function IF being  applied to its three 

arguments. The IF function will store the rule  in memory so that it can be used 

later to make inferences. For  example, consider t he three Input PIDGIN 

conceptions:  

MARY <SISTER JOHN>. JOHN <PARENT BIL L>.  

MARY <AUNT BIL L>?  

The first two assertions would be stored in the memory in their  

expanded Strict PIDGIN form. The question, however, must extract  information 

from the memory. This is done by matching the question  with all the 

conceptions stored in memory. If one matches then that  is the answer, but if 

none match then the system will try all matching  IF thoughts in order to try to 

answer the question using deduction.  If the first con ception of some IF thought 

matches, as it does in  th is case, then the other conceptions making up the IF 

thought are  treated as questions. If these can be matched (possibly involving  

further IF thoughts) then the original question succeeds and is  answered,  

otherwise the answer cannot be inferred from the memory.  

It can be seen from this example that there are two ways the  PIDGIN 

system treats conceptions and thoughts as they are input. If  it is an assertion 

then it is added to the memory and if it is a  ques tion then it is matched against 

the memory to retrieve information  from it. Together with commands (which 

are like assertions but may add  more than one conception to the memory 

according to matching ENABLE  and PRODUCE thoughts) these form the basis of 

all PIDGIN.  It remains necessary to describe the exact syntax of both Input  and 



 
50  

Strict PIDGIN, the matching algorithm, the general structure of  the 

system, and implementation questions such as the structure of  memory.  

2.1.1 The Strict PIDGIN La nguage  

A descrip tion of the syntax of Strict PIDGIN will be given next,  and it is 

convenient to describe first the foundation of the complete  PIDGIN system -  the 

interpreter. The basic interpreter is called ABC  (Associative Backtrack 

Computer) and the language over which ABC is  defined is called ABL 

(Associative Backtrack Language). Each Strict  PIDGIN thought is a legal ABL 

expression, so each Strict PIDGIN  thought can be interpreted according to the 

rules of ABC. The complete PIDGIN interpreter is ABC plus a number of ABL  

expressions to  be described later.  The syntax in this section is a type of 

Backus -Naur notation  with the following features :  

i)   The string ": :=" can be read as "is defined as".  

ii)   The vertical bar can be read as "or".  

iii)   Lower case letters and the h yphen are used to name syntax  

categories. Each category is defined once by placing it on  the left -hand 

side of the "::=" string with its legal replacements on the right -hand 

side.  

iv)  Upper case letters, digits and punctuation characters are  terminal 

symbo ls.  

v)   If a defined syntax category (say, X) is used terminated by the  

letter "s" then this means that is may occur one or more times  (i .e. Xs 

::= X æ X Xs ).  



 
51  

vi)  If a defined syntax category (say, X) is used terminated 

by the  string " -choice" then this m eans that it may occur between band  

or class brackets (see syntax). That is:  

X- choice ::= X æ (X - choices) æ íX- choices ý æ [X - choices] æ êX- choices ú 

vii)  A string in quotes is used to describe the category in English.  

First the ABC language ABL is defined a nd the interpretation rules 

given. This is followed by the syntax of Strict PIDGIN together with some notes 

justifying the structures described by the syntax by  reference to the way the 

system is used. It should be noted that the  set of strings defined by the PIDGIN 

syntax rules are a strict subset  of the set of strings defined by the ABL syntax 

rules. Thus the  interpretation rules given for ABL also apply to each legal 

PIDGIN  string.      

2. 1.1A Associative Backtrack Computer  

The following sixteen syntax ca tegories define a language  called ABL 

(Associative Backtrack Language). After this the  evaluation of each legal ABL 

string is given.  

expression ::= application æ band æ class æ concept  æ number  

application ::= <expressions>  

band ::= ordered - band æ unordere d - band  

class ::= ordered - class æ unordered - class  

concept : : = name æ name subscript  

number ::= integer æ real æ negator number  

 

ordered - band ::= [expressions]  

unordered - band ::= êexpressions ú 

ordered - class ::= ( expressions )  

unordered - class::= íexpressions ý 

 

name ::= "one or more letters"  

subscript ::= integer  

integer ::= "one or more digits"  

real ::= integer point integer  

point ::= "a full stop"  

negator : : = "a hyphen"  



 
52  

To define the evaluation of an ABL expression the evaluation  

of each of the five types of expression is described separately.  In general when 

an expression is evaluated it either returns a value,  and is said to succeed, or 

else it fails.  

i)   Concept. In order to describe how a concept is evaluated it  is 

necessary to describe some other featu res of ABC first.  Every pair of 

concepts is associated with an expression, which  is initially taken to be 

the first concept of the pair. The pair is  ordered, that is, the pair A/B 

need not be associated with the same  expression as the pair B/A. The 

second concept of the pair is called  the "aspect" and the expression is 

called that aspect of the first  concept. For example, if the pair 

PERSON/SUB is associated with MALE  th en MALE is called the SUB 

aspect of PERSON. The REF aspect of a  concept is also called t he 

reference of that concept.  The aspect of a subscript ed concept is always 

equal to the same  aspect of the unsubscripted concept except in the 

case of the REF  aspect. That is, the X aspect of A equals the X aspect of 

A1, A2, A3 and so on, but the REF aspe ct of A may be different from 

that  of A1 , which may differ from that of A2 and so on. For example,  

the SUB aspect of PERSON3 is the same as the SUB aspect of PERSON  

but their references may be different.  

  A concept is evaluated by evaluating its reference , if this  is equal 

to the concept itself then evaluation fails.  

  The association of an expression with a concept pair may be  

"fr ozen " so that it can no longer be  alt ered by the PIDGIN processes  of 

matching and binding described later. In PIDGIN the only  association 

that is frozen is that with the concept ENTITY, if this  is frozen as the 



 
53  

reference of a concept then that concept is called  an entity 

concept. Any other concept is called a group concept.  

  During the evaluation of ABC if the association of an e xpression  

with a concept pair is altered then the previous association is  

remembered until the expression currently being evaluated either  

succeeds or fails. If it fails then the previous association is  reinstated, 

this is called automatically undoing a si de-effect after  failure.  

  The set of all the associations of expressions with concept  pairs is 

called the data -base. During evaluation the data -base is  continually 

changing and it forms a context for resolving ambiguities  and anaphoric 

references during n atural language translation, as well  as a guide to 

control memory searching and a "local variable"  mechanism when 

making deductions. The memory of PIDGIN is a subset  of the data -base 

consisting of those statements stored by the  running system. The ABL 

prog rams making up the PIDGIN system  determine the particular way 

the memory is "partitioned" into the  data -base and this is described in 

more detail later.  

ii)  Application. An application is an ordered sequence of one or  more 

expressions, the first of which is called the function and the  others of 

which are called the arguments. To evaluate an  application (i.e. apply a 

function to its arguments) all the  arguments are formed into an ordered 

band (any argument that is  itself an appl ication being evaluated first ).  

  This ordered band is then made the reference of the concept  

ARGS. The function is then examined; if it is one of the 42 ABL  

primitives listed in Appendix 1 then the action taken is as  described in 

Appendix 1 (note that if its ARCS aspect is QUOTE then  the arguments 



 
54  

are not evaluated first as described above). If it is  not a 

primitive then it is evaluated according to the rules given in  these five 

pieces. In particular if the function is a concept then  its reference is 

evaluated. The value of the applic ation is the value  ob tained by 

applying the function to its arguments.  

iii)  Band. A band is either an ordered or an unordered conjunction  of 

all the expressions it contains. It is evaluated by evaluating  each 

expression until all succeed or until one fail s. If an  expression fails then 

the evaluation of the band terminates  immediately and any side -effects 

are automatically undone and the  complete band fails, otherwise the 

band succeeds and the value  returned is the value of the last 

expression evaluated.  If  the band is unordered then the order of 

evaluation of its  expressions is not defined.  

iv)  Class. A class is either an ordered or an unordered disjunction  of 

all the expressions it contains. It is evaluated by evaluating  each 

expression until one succeeds  or all fail. If an expression  fails then any 

side -effects are automatically undone. If all the  expressions fail then 

the complete class fails. If an expression  succeeds then the evaluation 

terminates immediately, the side -effects  of any other expression i n the 

class being evaluated are undone and  the class succeeds, returning the 

value of the successful  expression.  If the class is unordered then the 

order of evaluation of its  expressions is not defined.  

v)  Number. The evaluation of a number always fails.  



 
55  

2.1.1B Strict PIDGIN Syntax  

A Strict PIDGIN program is a sequence of statements the syntax  of 

which is a particular restriction of the more general syntax of  ABL. The syntax 

of ABL allows any number of bracketed expressions or  concepts or numbers to 

be en closed in anyone of five types of bracket.  The syntax of PIDGIN allows 

only specific numbers and types of concept  and bracketing to make up a 

program. As the ABC interpreter is  defined over all ABL expressions it follows 

from the above that it is  defined o ver any PIDGIN program.  

A PIDGIN thought is a conception connected to a choice of  conceptions 

by one of the eight connectors. A conception consists of  one of the ten acts plus 

one to four actors plus a modifier. Before  giving the syntax of thoughts and 

con ceptions the following diagram of  a simplified version of the syntax may 

make their structure clearer:  

 

program ::= statements  

statement ::= thought  æ conception  

thought ::= <SUGGEST modifier state - choice state>  

 æ <ENABLE modifier state - choice action>  

 æ <PRODUCE modifier action state - choice>  

 æ <CAUSE modifier action actions>  

 æ <THEREFORE modifier  



 
56  

  <CAUSE modifier action actions> action>  

 æ <THROUGH modifier action action - choice>  

 æ <WHILE action - choice action - choice>  

 æ <IF modifier conception rule>  

r ule ::= conception - choice  

The following two categories do not form part of the syntax  but are 

given here because they are referred to later:  

plan :: -  action - choice  

scheme ::= state - choice  

The above syntax defines the connections allowed between the  

concept ions whose syntax is described next. Conceptions correspond  

approximately to simple English sentences and the above syntax  defines all the 

ways that these may be put together in PIDGIN. The  function part of a thought 

application is called a connector (see  Division 2.3A).  

conception ::= state  æ action  

state ::= <state - act actor modifier>  

action ::= <action - act kernel modifier>  

kernel ::= subject object  

  æ subject object source destination  

subject ::= actor - choice  

object ::= actor - choice  æ thought  æ pattern  

source ::= actor  

destination ::= actor  

 

actor ::= <nominal quantifier [attributes]  

     [specifiers] >  

nominal ::= entity - concept  æ group - concept  

entity - concept ::= SELF  

group - concept ::= THING  

 

state - act ::= BE  

action - act ::= BECOME  æ COGITATE  æ DO  æ IDEN TIFY  æ MOVE  æ PASS  

   æ PERCEIVE  æ TRANSFER  æ TRANSMIT  

   æ TRANS  æ TROW  

 

quantifier ::= <comparator quantity>  æ ALL  

comparator ::= EQUAL  æ ABOUT  æ MORE  æ LESS  

quantity ::= <operator quantity quantity>  æ number  

   æ variable  æ actor  æ ALL  

operator ::= ADD  æ SUB  æ MULT  æ DIV  

variable ::= NUMBER  

attribute ::= ATTRIBUTE  

specifier ::= <relation actors>  æ << relation relmod> actors>  

relation ::= SUB  æ EQUIV  æ INVERSE  æ OPPOSITE  æ POSS  æ HAS  

  æ FEEL  æ VALUE  æ PRIORITY  æ CLASS  æ space - relation  

space - relation ::= L OC æ NEAR  æ ABOVE  æ BELOW  æ BACK  

  æ FRONT  æ LEFT  æ RIGHT  æ BETWEEN  æ DIST  



 
57  

relmod :: = MAX  æ MIN  æ MEAN  

 

modifier ::= [ index author priority truth time manner  

  period [mods ]]  

index ::= integer  

author ::= entity - concept  

priority ::= inte g er  

truth ::= NOT  æ TRUE  æ POSSIBLE  æ DEFN  

time ::= quantifier  

manner ::= CAN  æ INTEND  æ ACCIDENT  æ DISPOSED  

period ::= START  æ WAX  æ CONTINUING  æ WANE  æ STOP  æ EVENT  

  æ REPEAT  

mod ::= <DEGREE actor>  æ <LOC actor>  

  æ <INTERVAL actor>  

 

This completes the syntax of Strict PI DGIN except for the  description of 

the category "pattern". It can be seen that a number  of features of PIDGIN are 

taken from Schank's notation for conceptual  deep structures. For example, 

consider:  

Schank     modifier  
         ô 

    subject <=> act ñ object  
    ó   ó 

    subjmod   objmod  

 

PIDGIN  <ACT <SUBJECT SUBMOD>  

    <OBJECT OBJMOD> MODIFIER>  

The equivalence is only approximate because PIDGIN contains  features 

not present in Schank's system. The differences between the  systems arise 

from the fact that Sch ank's notation is a static picture  of the deep structure 

whereas PIDGIN is a programming language. Thus  th e justification for Schank's 

pictures lies with the reader because  a precise interpretation is never given.  

The final part of the syntax describes a s tructure that enables  general pattern 

matching problems to be handled in PIDGIN (see  IDENTIFY, Part 2.3B5).  

pattern ::= lattice  æ grid  æ line  æ actor  

lattice ::= <grids>  

grid ::= <lines>  

line ::= <actors>  

match - degree ::= MATCH  æ SIMILAR  æ MIRROR  

match - typ e ::= SAME  æ RSUB  æ VAGUE  æ TYPE  æ LIKE  



 
58  

The ability to set up and compare patterns of actors is very  

useful for many problems, for example, the chess endgame problem  considered 

later.  The complete syntax of Strict PIDGIN has now been described.  

2.1.2 The I nput PIDGIN Language  

The syntax described in the last section would be tedious  to use as an 

input language because of the bracketing, the large  number of modifiers 

required, the dissimilarity with English and  the occasional necessity to repeat 

conceptions.  For these reasons  an input language is defined below to reduce 

these problems yet  maintain a clear correspondence with the Strict language.  

If the Strict language is imagined as the machine -code of a  PIDGIN 

machine then the input language is like an assem bler language.  It is in one - to -

one correspondence to Strict PIDGIN, is simple to  translate and is user 

oriented.  

The syntax below modifies the syntax of Strict PIDGIN. If a  category is 

not redefined it retains the definition given in the last  section. Curl y brackets 

are used to enclose optional items.  

 i)   Comments. These are expressly forbidden. Any information that  

would go in a comment should be given to the PIDGIN system. In some  

ways statements in PIDGIN are like comments in most programming  

languages.  

ii)   Labels. Any conception or thought can be labelled by following  it 

with a colon and the label name. The conception or thought is made  the 

reference of the label and if the label is used later it will be  replaced by 

its reference.  

iii)   Program.  



 
59  

statem ent ::= thought terminator  æ conception terminator  

thought ::= rule {modifier} connector thought  æ rule  

connector ::= SUGGEST  æ ENABLE  æ PRODUCE  æ CAUSE  

   æ THEREFORE  æ THROUGH  æ WHILE  æ IF  

rule ::= conception  æ conception choices  

choice: : = AND concepti on {,}  æ OR conception {,}  

te rminator ::= .  æ? æ!  

If a comma is used all the conceptions to the left of the comma  are 

bracketed together, otherwise bracketing is from the right, e.g. :  

A AND B OR C AND D. gives [A (B [C D] )]  

A AND B, OR C AND D. gives([A B] [C D] )  

A AND B, OR C, AND D. gives[([A D] C) D]  

iv)  Conception.  

conception ::= subject {modifier}{act {object  

   {source destination}}}  

object ::= actor - choice  æ <thought>  æ *pattern  

act ::= state - act I action - act  

If the act is omitted then the state -act (BE) is assumed.  

v)  Actor.  

actor ::= {quantifier}{[attributes]} concept  

    {s pe cifiers}  

quantifier ::= number  æ A æ AN  æ THE  æ NO  æ SOME  æ MOST  æ ALL  

   æ EVERY  æ ANY  æ <comparator quantity>  

   æ = variable  

where :  

NO is translated as <EQUAL 0 >  

THE,  A,  AN  is translated as <EQUAL 1 >  

SOME is translated as <MORE 0 >  

MOST is translated as < MORE <DIV ALL  2 >  

EVERY, ANY is translated as ALL  

If the actor starts with a quantifier it is assumed to be a group concept, 

otherwise it is assumed to be an entity concept.  

The entity concept SELF has a special meaning. If it is in the subject 

position then it is taken as referring to the PIDGIN system and the conception 

is treated as a command; otherwise it refers to the complete subject of that 



 
60  

conception. It must always b e used where it can be used. Its use is 

explained in Section 2.4.1.  

vi)  Modifier  

modifier ::= [mods]  

mod ::= POSSIBLE æ DEFN æ NOT æ CAN æ INTEND  

  æ ACCIDENT æ DISPOSED æ START æ WAX  

  æ CONTINUING æ WANE æ STOP æ REPEAT æ EVENT  

  æ <DEGREE actor> æ <LOC actor>  

  æ <TIME actor> æ <INTERVAL actor>  

The index, author and priority cannot be specified and are  added 

automatically by the input assembler. If the mod POSSIBLE is  used the priority 

is set to 20; if DEFN is used it is set to 10  greater than the user's  current 

priority; otherwise the user's  priority ~s used. The author is made the current 

user, and the index  is incremented by one for every new conception read.  If the 

conception is terminated by"?" then the assembler sets  up the modifier:  

[ index author p riority TRUTH TIME MANNER PERIOD MOD ]  

where TRUTH matches any truth, TIME any time and so on. However, if  

any modifier is stated explicitly it replaces the default value. It  will be seen 

later (Division 2.4.2C) that the index, author and  priority are ignor ed when 

matching.  

If the conception is terminated by"." then the default value  . for truth is 

TRUE and for time is NOW.  The following abbreviations are accepted in the 

modifier:  

PAST is translated as <LESS t>  

FUTURE  is translated as < MORE  t>  

NOW is transla ted as < EQUAL  t>  

where "t" is the current time as maintained by the PIDGIN system.  



 
61  

vii)  Patterns. A pattern may not  contain more than one 

occur rence  of any entity concept. On input they must be preceded by 

the character  "*".  

viii)  ABL. To input a structure  not complying with the syntax of  Input 

PIDGIN it should be preceded by the character "$". The  structure 

following t he "$" mus t conform to the syntax of ABL and  it will be taken 

as satisfying the PIDGIN structure currently being  searched for, either a 

thou ght or an actor.  From the above descriptions of Input and Strict 

PIDGIN it should  be clear how one is translated into the other. An 

example is given at  the start of this chapter.  

All the syntax of both Strict and Input PIDGIN has now been  covered. It 

is ne xt necessary to consider how PIDGIN statements  may be used to represent 

conceptual knowledge and thus enable  assertions and rules to be stored from 

which questions can be  answered. This will be done by first considering the 

overall  structure of the working  system. But first a few examples are given  to 

suggest how the PIDGIN statement corresponds to the English  sentence.  

2.1.3 Examples of PIDGIN  

The following examples give an English sentence with the  

corresponding Input PIDGIN deep structure plus a possible  English  paraphrase 

of the deep structure. The way in which the translation  is performed is 

described in Chapter 4.  

i)   John walked to the park.  

 JOHN [PAST] TRANSFER SELF A PLACE THE PARK  

  THROUGH JOHN [PAST REPEAT] MOVE 2 LEG  

   A PLACE 1  A PLACE 2  .  

John  transferred himself from some place to the park by moving his 

two legs from one  place to another.  



 
62  

ii )   Bill hit John.  

BILL TRANSFER AN OBJECT A PLACE JOHN.  

Bill transferred an object from somewhere to John.  

iii)   Will John give his wife an expensive prese nt on her birthday?  

JOHN [<TIME A BIRTH DAY <BELONG A PERSON <WIFE JOHN>> >]  

 PASS AN [EXPENSIVE] PRESENT SELF A PERSON  

  <WIFE JOHN>?  

W ill John pass possession of an expensive present from himself to 

a person who is his wife at the time equal to a moment wh ich is the 

birthday of the person who is the wife of John?  

iv)  Since smoking can kill, I stopped.  

A PERSON TRANSFER SOME SMOKE A SMOKEABLE LUNG  

[CAN] CAUSE THE PERSON BECOME [DEAD] SELF,  

 THEREFORE SELF [STOP PAST] TRANSFER  

  SOME SMOKE A SMOKEABLE LUNG.  

A person who transfers some smoke from a smokeable object to 

their lung can cause that person to become d ead, therefore I 

stopped transfe rring smoke from smokeable objects to my lungs.  

v)   John grows roses.  

JOHN [DISPOSED] DO AN ACTION  

 [INTEND] CAUSE SOME ROSE <HEIGHT =N INCH> BECOME  

  SELF <HEIGHT <MORE N> INCH>.  

John is disposed to carry out an action that intentionally  causes at 

least one rose of height n inches to become more  than n inches tall.  

iv)  Yesterday, the boy in that chair stopped the girl by t he window 

going to the park with the dangerous swings with John.  

BOY <LOC CHAIR> [PAST] DO AN ACTION  

 [INTEND <TIME YESTERDAY> ] CAUSE  

 (JOHN GIRL <LOC WINDOW>] [STOP] TRANSFER  

  SELF A PLACE PARK <CONT SOME  

   [DANGEROUS] SWING>.  

The boy located at the ch air did an action in the past that  yesterday 

intentionally caused the girl located at the window  and Jo hn to 

stop the event of transferring themselves from  somewhere to the 

location of a park containing at least one  dangerous swing.  

The above translations are at best very approximate because the  

translation actually performed by the PIDGIN system depends on the  

vocabulary of concepts and the entries in the translator's dictionary,  and these 



 
63  

change as the system is used. For example, in case (i)  "walk" could  

have been translated simply as the first conception (in  which case the 

information that the method of transfer involved feet  would have been lost). In 

the second example the tense of the verb is  ignored, as it might be in "a simple 

PIDGIN system. In the f ifth  example the actions involved in growing roses are 

not specified and  the intended result is simplif ied to merely incr easing their 

height.  All of these limitati ons in the translation can be imp roved by  giving the 

system more information about the meanin g of the  English words.  



 
64  

2.2 The PIDGIN System  

2.2.1 The Components of the System  

The best way to describe the complete system is to first  distinguish 

between its major components, then to consider each  component in detail and 

finally to show how they work  together to  

 produce a conversational problem -solving system.  

The following components may be distinguished:  

A. Associative Backtrack Computer  

 (i) Interpreter (42 primitives)  

  (ii) Assemb ler (Meta -ABL to Strict -ABL translator)  

B. PIDGIN  

 (i) Interprete r (10 acts and 8 connectors)  

  (ii) Assembler (Input to Strict PIDGIN translator)  

  (iii) Disassembler (Strict to Input PIDGIN translator)  

  (iv) Resolver (matcher , binder and deduction mechanism)  

C. Translator  

 (i) Analyser ( English to PIDGIN)  

  (ii) Synthesiser (PI DGIN to English)  

D. Knowledge Base  

 (i) Primary knowledge  

  (ii) General knowledge  

  (iii) Specialist  knowledge  



 
65  

2.2.1A Associative Backtrack Computer  

This is the heart of the entire PIDGIN system. All  of the basic PIDGIN 

features are writt en in ABL, the language  of ABC. The syntax of ABL has 

already been described in order to  introduce PIDGIN but the description of the 

primitives of ABC is  relegated to Appendix I as they are more concerned with 

the  implementation of PIDGIN than its structur e and interpretation.  

ABL has been fully implemented using the programming language  POP-

2 and it has been used to implement the basic features of PIDGIN.  In order to 

simplify programming in ABL a language called Meta -ABL or MABL was 

developed, and all the examples given in ABL are written  in MABL. MABL allows 

much of the nested bracketing of Strict -ABL to be omitted. All the modules 

described later are implemented either  using MABL or using PIDGIN itself.  

ABL can be regarded as the "micro -code" of the PIDGI N machine in  the 

sense that it was used to write expressions to implement the basic  PIDGIN 

features and once the design of PIDGIN was fina1ised these  expressions were 

never changed. That is, all further extensions to the  system in terms of adding 

to its kn owledge, both of facts and rules,  can be done in PIDGIN and 

eventually, once the transl ator has been  extended, in English.  

It should be remembered that A BL is not the deep structure of , natura l 

language. It is at a level which is below the lowest level  tha t can be altered by 

the natural language level. No natural  language input is translated into ABL 

expressions and no ABL  expression can be translated into natural language 

unless the  expression is a valid PIDGIN statement. Very crudely, the part of  the 

syst em written in ABL can be thought of as the hardware or the  

neurophysiology of the complete PIDGIN system. For example, one  important 

capability possessed by PIDGIN is the ability to answer  questions concerned 



 
66  

with its own workings. Such questions however  can only be 

answered to the level of the PIDGIN programs that make  up the system. For 

the system t o produce more detailed answers it  would be necessary to 

construct a "model" of the ABL programs in  PIDGIN. Such a model would be a 

collection of PIDGIN facts and  rules whose interpretation reflected the inner 

workings of the system,  rather than a direct analysis of the system itself.  

2.2 .1B PIDGIN  

As every PIDGIN statement is a member of the set of ABL  expressions 

the ABC interpreter will interpret any PIDGIN s tatement.  If the syntax of a 

PIDGIN statement is examined it will be seen that  both a thought and a 

conception are applications whose first member  is a concept (a connector or an 

act). When evaluated this will result  in the reference of that concept being 

evaluated. Thus the  reference of each of the eight connectors and ten acts 

should be an  ABL expression whose evaluation results in the changes to the 

system  associated with that act or connector. For example, if a PIDGIN  

conception is input as a s tatement then it should be added to the  memory, and 

if a PIDGIN conception is input as a question then a  matching conception 

should be retrieved from memory as the answer,  and if a command then the 

appropriate action should be taken. The  details of the actions perf ormed by 

these expressions are described  later in Section 2.3.  

The user who interacts with the system may do so at a number  of 

levels:  

(i) Operating system command level  

(ii) Implementation language (POP -2)  

(iii) Associative Backtrack Language  



 
67  

(iv) PIDGIN language  

(v) English  

Commands are available at each level to allow the user to  ascend or 

descend one or more levels, but the exact form of these  implementation details 

will not be discussed here.  

At each level the syntax of the output from the system refle cts  the 

syntax of the legal input. This feature of the system becomes  more marked at 

the higher levels. At the PIDGIN level the output  from the system has the same 

syntax as the legal input to the system.  However, certain errors  at the PIDGIN 

level can res ult in a return  to the ABL level together with an ABL error 

message. At the English  level all errors are trapped and all output has a syntax 

related to  the input syntax that can be translated by the system into PIDGIN.  

This is because both the English - to -PIDGIN Analyser and the PIDGIN  to -English 

Synthesiser use the same dictionary. By observing the  system's output the 

human user can learn what input the system will  be able to translate.  

The program that reads, translates and evaluates PIDGIN is  called the 

driver and this program is written in ABL. The simplest  form the driver could 

take would be to read repeatedly a single  PIDGIN statement in the syntax of 

the Input language, translate this  into the Strict  language and then evaluate it. 

The driver in this  case thus repeatedly calls the assembler followed by the 

evaluator.  The more complex driver actually used carries out tests and traps  

errors to provide a better interface to the PIDGIN user. If the  system were used 

entirely at the English level then a PIDGIN  driver  and assembler would not be 

required. They are necessary in order to  carry out the initial "bootstrap" to the 

English level and to provide  a primitive level of control and adjustment to the 

working English  leve l sys tem.  



 
68  

At the PIDGIN level it is al so necessary to provide a  

disassembler for translating the Strict PIDGIN back into Input  PIDGIN so that 

the output from the driver has the same syntax as  the input typed in by the 

user.  

When the user is working at the English level the dialogue is  translat ed 

immediately to and from Strict PIDGIN so the assembler and  disassembler are 

not used. However, at the English level, all the  other parts of the system are 

required, i.e. the ABL expressions  associated with the connectors and acts and 

the resolver to com pare  statements. The resolver is used to search for a match 

between  two statements. This search may involve further searching to match  

other statements. This mechanism is used to check input for  consistency and to 

answer questions and carry out deductions.  It is  thus a f undamental part of the 

whole sys tem. It can be divided into  two parts, the matcher and the deducer. 

The matcher can be described  by giving a whole series of rules that can be 

used to determine whether  any two statements match. This is done i n Section 

2.4.2. The  deducer is used to answer questions that cannot be answered 

directly  from the memory by matching but require further matching to be  

performed first, this is described in Section 2.4.3.  

2.2. 1C Translator  

The translation from English to PIDGIN is carried out by an  ABL 

progr am called the Analyser and the reverse translation from  PIDGIN to English 

by another ABL program called the Synthesiser.  These programs are described 

in more detail in Chapter 4 but the  ideas have not been fully impleme nted as 

equivalent translators have  already been implemented by R. Schank and 

others.  



 
69  

The translators can be sub -divided into parts corresponding  

to the various levels of translation. An important aim in  designing the 

translators is to try to separate thos e parts of the  translation process that are 

language dependent from those that are  language independent (PIDGIN 

dependent) and to try to design the  language dependent part in such a way 

that it can be easily updated  and amended. Ideally such extensions to the 

natural language syntax  that can be handled by the system should be possible 

at the natural  language level by a series of definitions. The translators 

described  in Chapter 4 make use of a dictionary in order to provide an easily  

amendable interface bet ween the natural language and PIDGIN levels.  

2.2. 1D Knowledge Base  

The complete system consists of a fixed core of ABL programs  plus a 

collection of PIDGIN statements called the knowledge base.  This knowledge 

base grows as the system converses with the use r. All  the facts and rules that 

determine the system's range and depth of  knowledge are stored in the 

knowledge base. The knowledge base can be  roughly divided into a collection of 

PIDGIN statements that  initialise the system called the primary knowledge, a 

collection that  provides the sy stem with a rough knowledge of a wide range of 

facts  and rules called the general knowledge, and a large number of specific  

facts and rules concerned with the particular application that the  system is 

being asked to convers e about called the specialist  knowledge.  

Appendix II includes a typical set of primary knowledge  statements. 

These create a primary set of concepts and pro vide a  model for all fu ture 

PIDGIN statements created b y the Analyser (see  Chapter 4). They also form  

the basis of the dynamic structure of  the system by enabling certain commands 

and specifying the states  produced.  



 
70  

The general knowledge (see example in Appendix II) extends 

the  set of concepts, facts and rules started in the primary knowledge  base. The 

di fference between the two is that the primary knowledge  remains the same no 

matter what application the system is used for,  but the general knowledge is 

orientated to the application. The  general knowledge forms a "world view" that 

places any particular  app lication within a context.  

The general knowledge can be roughly divided into the  following parts:  

i)   a structured set of group and entity concepts.  

ii)   their attributes,  

iii)   the relations among them,  

iv)  a set of conceptions defining the possible combi nations of  the 

concepts,  

v)   a set of thoughts defining suggest and action information,  

vi)  a set of "core beliefs" and inference rules.  

The "core beliefs" and rules incorporate knowledge that guides  the 

system's behaviour and enables it to make prediction s and answer  questions 

about the likely behaviour of others. Colby (1969a) has  estimated the core 

beliefs of a person as under 50. Typical such core  beliefs inc1ude:  

i)   Avoidance. If one person does something that makes another  

person angry then the secon d person will often avoid the first.  

ii)   Retaliation. If one person does something that hurts another  

person then that second person will often want to hurt the  first person.  



 
71  

iii)   Taking sides. If one person does something that hurts a  

second and a third  person thinks the first did a good thing  then the 

second person will often be angry with the third.  

iv)  Alliance. If one person likes a second and a third person  also likes 

the second then the first person will often like  the third but  

v)   Triangle. If on e person loves a second and a third person  also 

loves the second then the first person will often hate  the third.  

Other general information concerns basic enable and produce  

information, for example, for a person to transfer an object requires  the person 

to be near the object, the object to be moveable, and the  person to want to 

move it. Once moved the object will no longer be  at the location it was at but 

will be at the location it was moved to.  

The world view forms a framework into which the system can sl ot  new 

knowledge and from which it can make deductions to answer questions  and 

solve problems (see Section 2.4.4). The setting up of the world  view is the 

second step in the initialisation of a working PIDGIN  system. The third and final 

step involves setti ng up a natural  language to deep -structure dictionary to 

enable PIDGIN to translate  to and from the deep structure. This final step is 

called "dictionary  set -up" and is described in Chapter 4. The three steps create 

a working question -answering problem -solving system to which new  concepts, 

new rules, new beliefs and new dictionary entries may be  added at any time by 

conversing with the system in English.  

2.2.2 The Initialisation of the System  

The basis of a working conversational PIDGIN system is an  ABC 

int erpreter and an ABL assembler. These are currently  implemented in the  POP-



 
72  

2 programming language and they are described  in Appendix 1. The 

initialisation consists of the 'three parts:  

A. Defining the PIDGIN system in ABL.  

B. Definin g the English translator  in ABL.  

C. Creating the Knowledge base in PIDGIN.  

2.2.2A Defining the PIDGIN System  

There are seven parts that must be defined:  

1. the eight connectors  

2. the ten acts  

3. PIDGIN assembler  

4. PIDGIN disassembler  

5. PIDGIN resolver  

6. PIDGIN driver  

7. initi alising certain concepts  

Each of these consists of associating a complex ABL expression  with 

some aspect of certain concepts. For example, a simplified  version of the driver 

in MABL could be:  

<REPEAT [<ASSEMBLE> - TP. TP]> - DRIVER.  

This associates the expres sion on the left wi th the reference  of the 

concept DRIVER. Appendix 1 gives the MABL expressions that  form part of this 

first stage in the initialisation of the system.  



 
73  

2.2.2B Defining the English Translator  

The other major part of the system that is defin ed in ABL is  the 

translator to translate between English and PIDGIN. This  consists of three parts 

:  

1. the Analyser  

2. the Synthesiser  

3. the Dictionary  

Chapter 4 discusses these segments in more detail. The general  

approach is taken from the methods descr ibed by Schank although the  

implementation differs because of the advantage that can be taken  of certain 

powerful primitives in ABC and because of the structure  of PIDGIN.  

2.2.2C Creating the Knowledge Base  

Once the seven parts of the PIDGIN system have be en assembled  the 

system may be switched from working at the ABL.1eve1 to working at  the 

PIDGIN level by evaluating the PIDGIN driver. Basically, this  repeatedly calls 

the Input PIDGIN assembler and then evaluates the  result. Further initia1ising 

of the sys tem is done at the PIDGIN  level and it can be separated into three 

parts :  

1. primitive knowledge  

2. general knowledge  

3. specia1ised knowledge  

These are described in the last section and in Appendix II.  As each 

PIDGIN state me nt is read it is assigned a pr iority by the  assembler. This 



 
74  

priority specifies how important that statement is  and it is used to 

try to resolve inconsistencies within the system  (see Section 2.4.1). At any 

moment the reference of the concept  USER gives the current author and the 

PRIORI TY aspect of that author  is a number between 0 and 100 giving the 

priority associated with  that author.  

If the priority is 100 then no checks for consistency are  performed and 

the statement is stored immediately in the memory. Any  statement with a 

priority  of zero is regarded as no longer required  by the system and if the 

system exhausts all the storage space  available for the memory then such 

statements are automatically deleted.  Any other priority is used to determine 

which of two conflicting  statements t he system will reject. For example, if the 

memory contains  a conception with a priority modifier of 80 and a user with 

priority  50 tries to tell the system a fact that contradicts that conception  then 

the user's fact will be rejected. In general a statemen t will  be rejected if the 

memory contains a contradictory statement of  higher priority. If the statement 

in memory is of equal or lower  priority then the new statement is added to the 

memory in such a way  that when the memory is searched it will always be 

found first.  Further, it is possible for a user to alter his priority by using  the 

modifier DEFN, this stores the statement with a priority 10  greater than the 

user's current priority and this enables the user to  get the system to check his 

statements for self -consistency.  

The above simple priority system is sufficient to enable a  simple linear 

hierarchy of counter checks to be maintained. Users  with the responsibility for 

creating and maintaining the system will  have a high priority whereas users 

who simpl y make use of the system  will have a low priority to prevent them 

from destroying the  consistency of the complete system.  



 
75  

During Part 7 of the PIDGIN initialisation the following  

associations are made:  

 90 - GENERAL,  PRIORITY .  

 1 00 - SYSTEM, PRIORITY.  

SYSTEM - USER.  

This  means that when the primitive knowledge is read the author is  

SYSTEM and the priority is 100. At the end of Part 1 (primitive  

knowledge) the user is changed by the statement :  

GENERAL - USER.  

and subsequent statements are assigned priority 90. The  specialised  

knowledge may be set up by a number of users who may have different  

pri orities (usually less than 90).  

Checks  are required to prevent a user from altering his own  priority. 

This is done by associating a class concept with the CLASS  aspect of t he author 

concept. There are three classes of user -  SYSTEM, GENERAL and USER, and 

each class is associated with a different set  of checks. A user working in 

SYSTEM class can alter any part of the  system including class and priority; a 

user with GENERAL cl ass cannot alter class or priority and cannot return to the 

ABL level  (where such checks could not be made); a user with USER class is  

further restricted in that such a user may only work at the English  level and 

cannot return to the PIDGIN level. The user  name thus acts  as a password and 

each user is required to state his name when first  entering the system.  

Appendix II gives listings of parts of all three segments. The  final 

segment, specialised knowledge, merges into the knowledge obtained  from the 

end -user, the user who uses the system at the English level in  order to solve a 

practical problem. All of Parts I and 2 and some parts  of Part 3 are at the 

PIDGIN level but eventually it becomes possible  to switch up to the English 



 
76  

level in order to teach the s ystem new  facts and rules. The switch is 

carried out by entering a PIDGIN  statement consisting solely of the user name. 

This special statement  is recognised by the BE act and it causes the system to 

use the  English driver. This driver repeatedly calls the Analyser to read  an 

English sentence and translate it into PIDGIN. It then evaluates  the PIDGIN 

which results in a PIDGIN answer which is then translated  back into English by 

the Synthesiser. This process is described in  more detail in the next section.  

2. 2.3 The Construction of the System  

The overall construction of the PIDGIN system is diagrammed in  Fig. 

4.1 (Section 4.2.1). It can be seen that it is possible to  regard it as consisting 

of three parts -  the processor. the memory and  the translator.  

2.2.3A The Processor  

The processor is the name given to the PIDGIN driver plus the  ABC 

evaluator with its associated primitives. At any moment while the  system is 

running the processor contains the PIDGIN statement being.  evaluated. 

Because the evaluation of a si ngle statement may result  in further statements 

being evaluated before the first has completed  evaluation a number of 

statements may be in the middle of being  evaluated at any moment. The 

stacking and unstacking of these  partially evaluated statements is t aken care of 

by the PIDGIN driver.  

The evaluation of a PIDGIN statement either results in the  statement 

being stored in memory or a matching statement being  retrieved from the 

memory. A comparison between the evaluation of  PIDGIN and the evaluation of 

a mo re conventional programming language,  such as POP -2, may make the 

evaluation of PIDGIN clearer. In POP -2 a variable may be associated with a 

function body (a lambda expression)  by defining a function with that name. 



 
77  

When that name is followed by  round brac kets containing 

expressions. the expressions are first  evaluated and then the function is 

applied. In PIDGIN the  distinction between function name and parameters is 

not so distinct.  Functions do not have names but instead each function is 

associated  with a  description of the parameters it requires. When any 

statement  is evaluated all the functions whose parameter description matches  

that statement are evaluated one by one until either one succeeds or  all fail. 

Returning to the comparison with POP -2, it is a s if  function s with the general 

form, e.g. :  

function f a, b, c;  

 j(a,  b); k(c); l(b,  a,  c);  

end;  

were interpreted  as something like :  

function {a, b, c};  

 if {a,  b} and {c} and {b,  a,  c} then  

  true else false close;  

end;  

where, for example, {a,  b} means a pply all functions whose parameter  

description matches {a,  b} until one returns true and if all return  false then the 

result is false. If {a,  b} , {c} and {b,  a,  c} all  return true then {a,  b,  c} returns 

true. Anyone familiar with PLANNER  will immediately recognise this goal -

oriented success/failure  mechanism.  

The advantage of this evaluation scheme is that it is closely  related to 

human question -answering conventions. New functions may  be defined to 

extend the system capabilities without destroying  previou s definitions. The new 

function will automatically be tried  if a matching statement is evaluated. The 

evaluation mechanism can  be thought of as trying to prove a statement by 

searching for a fact  (or disproving by counter -example in PIDGIN) or a rule. A 

fact is  simply a function that is always true, to return to the analogy with  POP-



 
78  

2, and a rule is a function that is true if a further series of  

statements is true (like function {a,  b,  c} above).  

One disadvantage of this method of evaluation is that, unlike  

conventi onal programming languages, functions cannot be called directly.  The 

apparent inefficiency of this is overcome by the nature of a PIDGIN  statement 

as a structure incorporating knowledge. The matching that  must be performed 

before applying any func tion is an essential part of  the question -answering 

process.  

The evaluation scheme actually used by PIDGIN is more complex  than 

the above description suggests, for example, it involves the  conjunction and 

disjunction of statements and negation. But the ide a that matching is the 

fundamental evaluation process is equally true.  A more complete description of 

the evaluation scheme of PIDGIN can be  found in Section 2.4.1, and a complete 

description of the matching  process is given in Section 2.4.2.  

Although it i s possible to draw a close analogy between aspects  

of PIDGIN and PLANNER it is important to recognise the differences  

because it is in these that the extra power of PIDGIN lies.  

2.2.3B The Memory  

The memory can be divided into two parts -  the immediate and  the  

long - term memories.  

The two basic memory processes are" transmitting a statement to  

memory and retrieving a statement from memory. These can be performed  

explicitly using the TRANSMIT act (see Part 2.3B 10 ) and they occur  implicitly as 

evaluation proce eds (see the last division).  



 
79  

The efficiency of the memory largely determines the overall  

efficiency of the system. One efficient way of implementing the  memory is to 

avoid multiple copies of a structure. This could be done  during translation when 

new struc tures are created by first searching  the memory for the structure. If 

this were done then the memory search  for the complete structure would be 

much simpler. In such an  implementation the actual structure representing a 

statement might be  considerably diff erent from that suggested by the syntax. 

For example,  an actor could be set up as a basic data structure which combined 

all  the qualifiers of its main concept, although it would be necessary to  include 

references to the conceptions containing the actor in order  to allow the 

modifiers to be checked. This flexibility of the PIDGIN  implementation is not 

present in systems based on PLANNER where the  data -base pattern is not 

restricted to any fixed format.  

All the above details of implementation obscure the cent ral  problem of 

efficiency,  which is to find a way to overcome the  combinatorial effect of a 

growing memory on the time taken to solve  a given problem. Schwarcz (1970) 

points out that this combinatorial  explosion comes not from the memory search 

for facts b ut from the  investigation of inferences during problem solving. He 

suggests that  a structure larger than his triples might mitigate and PIDGIN 

does  comply with this suggestion but this only pushes back the explosion  to 

slightly larger memory sizes. A compl ete analysis of the problem  has not been 

done for PIDGIN but it is hoped that the increasing  complexity of the memory 

as its size increases can be used to offset  the inefficiencies resulting from the 

increasing size. By matching  the implementation with the  nature of the use of 

the deep structure  it is hoped that the knowledge contained in the memory can 

be used  as a heuristic to speed up searching by guiding the search to the  right 

place. For example by controlling this search a1goritlunusing the  "substitut able" 

relation (SUB) it will improve as the system is  supplied with more concepts 



 
80  

because this will automatically limit the  number of concepts that are 

substitutable for any particular concept  used.  

2.2.3B1. Immediate Memory (I M)  

a. Short - term Memo ry  (STM)  

STM enables conflicting facts (or different "possible worlds")  to be 

stored in the memory without the inconsistencies interfering with  each other. 

This is done by storing them outside the long - term  memory (LTM) in the form 

of a tree structure so that any memory search  always proceeds down a single 

path from the current leaf to the root.  If the fact is not found in the STM tree 

then the LTM is searched,  this can be diagrammed as :  

 

In this situation the facts A, B, C, and D will be examined before  LTM is 

searched.  

As execution proceeds the STM tree grows and at any given  point in the 

evaluation there is a current node and a current branch.  A new node is set up 

in the following circumstances:  

i)  When a rule is evaluated a new node is added to the tree so  that  

any statements added to the memory while inside that  rule can be 

easily removed if it fails.  



 
81  

ii)  Similarly when evaluating a class of statements (i.e. a  

disjunction o f statements) a new node is set up and any member  of 

that class that stores a statement w ill do so to a different  branch,  

iii)   and when evaluating a band of statements (i.e. a conjunction of  

statements) a new node is set up so that any statements stored  can be 

easily removed if the band fails.  

If a rule, band or class succeeds then the curren t branch and  node are 

not altered but if they fail then  the current branch and node  are set to the value 

they had before evaluating the structure. When  an evaluation is complete all 

the statements stored  between the  current branch and the LTM can be added to 

the LTM.  

b. Suspended Evaluation Memory (SEM)  

Complete evaluation may be suspended, for example, to ask the  user a 

question. This is done by saving the STM in a band called SEM.  A new STM can 

then be started and used to evaluate the new input.  Every sav ed STM in SEM is 

associated with what is called a reviver.  This is a statement which if matched 

will restore the suspended STM  and continue evaluation.  

For example, if the sentence :  

John flew to London.  

was input the sys tem might generate the question :  

Was  John a pilot or passenger?  

and suspend t he current STM with the reviver :  

JOHN < SUB (A PILOT A PASSENGER».  



 
82  

When any sentence is input it is first stored and then 

compared  with all the revivers in SEM. If any match the associated STM is  re -

activated. As th e required information will then be in the  memory evaluation 

will be able to continue.  To avoid confusing the user by reviving old evaluations 

the  size of SEM is arbitrarily  limited to five members, any new member  after 

the fifth will replace the oldest me mber.  

c. Current Evaluation (CE)  

The current context  of evaluation is determined by :  

(i)   the current STM tree plus the current branch and node.  

(ii)  the current references of all concepts.  

(iii)  the current statement plus all suspended statements.  

(iv)  th e current LTM.  

The manner in which the references and the nesting of statements  are 

stored is partly described in Appendix I when the ABC system and  the PIDGIN 

driver are discussed. To a large extent it is handled by  the ABC system in a 

manner which is tra nsparent to the workings of  PIDGIN.  

d. Context Information (CI)  

The translation from English to PIDGIN and vice -versa requires  context 

information to resolve and to create various references such  as definite article 

and pronoun references. This information  is held  as the global reference of 

concepts, for example, the global reference  of HUMAN might be JOHN. The 

global reference of certain special  concepts is also held by the translator, for 



 
83  

example, HE, SHE, IT,  ONE, THEY and WE, in order to provide a 

sente nce context for  resolving anaphoric references.  

If the sentence being analysed is the reply to a question then  it might 

be elliptical if it immediately follows the question. The  information for replacing 

the missing parts of the elliptical reply  is obtaine d by the Analyser from the 

reviver of the last entry in  SEM. For example, the reply to the question in 

segment (b) above  might be :  

A pilot.  

The reviver supplies the missing information.  

Definite article references may need to be resolved from LTM.  For 

exam ple, "the girl next door" might cause the Analyser to ask  the question A 

[YOUNG] WOMAN <LOC NEXTDOOR> which might find MARY  <LOC 

NEXTDOOR> in the memory and resolve the reference.  

2.2.3B2 Long - term Memory (LTM)  

LTM contains all the statements that have bee n input to PIDGIN.  They 

can be imagined as a linear list, in index -number order, to  which new 

statements are added at the high - index number end. At the  start are the low 

index statements of the primary knowledge, followed  by the general knowledge 

and the s pecialist knowledge. The  dictionary used by the translator is also 

stored in the LTM although  its format differs from that of normal statements. 

When LTM is  searched the search starts at the high index -number end and 

proceeds  towards the low index -number e nd. So if the memory contains two  

statements that would match, the one with the higher index -number will  be 

found first and terminate the search; the higher numbered statement  is said to 

"hide" the lower.  



 
84  

Although this simple description of the LTM provide s a clear  

model of the system's behaviour when searching it would be very in  

efficient if implemented this way and further it does not exhibit all  th e 

properties desired of the memory. Instead the LTM is organised  as what is 

called a "merged" memory rather  than a linear memory. The  LTM is first 

partitioned into eighteen parts corresponding to the  eight connectors and the 

ten acts. Each partition contains a merged  list of all the statements which have 

that connector or act. The  structure of the merge lists i s best described by 

explaining how a  new statement is added; there are three possibilities :  

i)   the statement matches nothing in the list; in this case the  

statement is added to the end of the list at which the search  started, 

i.e. the newest are found fir st.  

ii)   the subject of the statement is more specific than a matching  

statement in the list; in this case the new statement is added  before 

the old so that it will be found first in future  searches.  

iii)   the subject of the statement is less specific than  a matching  

statement; in this case the search continues until either a less  specific 

or a miss -matching statement is found when the new  statement is 

inserted before it.  

One actor is less specific than another if it is either  substitutable for the 

other or  they are the same (or equivalent) and  the second is more qualified 

than the first. For example, ANIMAL is  less specific than CAT and [BLACK] CAT 

is more specific than CAT.  

It can be seen that a merge list is a linear list if none of the  statements 

in the list matches another.  



 
85  

The merge list for the act BE is called the "world model"  

because it contains all the states that describe the attributes of  the objects 

known to the system.  

From what has been said it can be seen that the memory only  grows. It 

would be useful in practise to have a "garbage collection"  system that 

destroyed unnecessary statements when computer storage  was full. This would 

be possible with the above merged lists by  destroying specific statements if 

more general statements where  present.  This would result in the system losing 

specific information  but retaining general information. It would also be possible 

for the  system to generate general statements in order to replace two or more  

specific statements with a single general one. For examp le, if the  statements:  

JOHN < POSS  A CAT>.  

JOHN < POSS  A DOG>.  

were stored in the memory they could be replaced by:  

JOHN < POSS  A PET>.  

A similar approach to garbage collection is to destroy the  attributes and 

specifiers of statements. The advantage of these  approaches to garbage 

collection is that they do not simply destroy  knowledge but gradually make it 

more imprecise and general.  

2.2.3C. The Translator  

During translation to and from PIDGIN a number of buffers are  used to 

contain intermediate structures, th e main sequence is :  character buffer, word 

buffer (surface structure), item buffer  (shallow structure), and then the 

processor (deep structure, PIDGIN).  The output synthesis works in the reverse 

sequence using a different  set of buffers. The precise way i n which the buffers 

are used is  described in Chapter 4.  



 
86  

2.3 The PIDGIN Concepts  

Before describing how questions are answered and problems solved  by 

the process of matching statements it is first necessary to consider  the simplest 

unit in PIDGIN, the concep t.  

In all the examples where English is compared to an equivalent  PIDGIN 

statement (see Section 2.1.3) it looks as if the PIDGIN  statement is a sequence 

of words taken from the English sentence, re -ordered, bracketed and written in 

upper -case. This is misl eading as  it hides the fundamental distinction between 

the words in the English  sentence and the concepts in the PIDGIN statement; it 

is more than  just a matter of upper or lower -case. The upper case words in the  

PIDGIN statements are symbols of "universal  human concepts". A  universal 

human concept or concept is a language independent meaning.  Two English 

sentences with the same meaning or in fact any sentences  in any language with 

the same .meaning will translate into the same  PIDGIN statement. The reason 

for using English words for some of  the concepts is simply for convenience, but 

it can lead to confusion  if the distinction is not borne in mind.  

There are some schools of thought that maintain that no two  sentences 

have the same meaning and that the same sentence used on  two separate 

occasions will have a different meaning on each occasion.  I am not using the 

word "meaning" in this way. Two sentences have the  same meaning if they 

convey the same explicit information. One  practical method for judging if two  

sentences have the same meaning  is to consider the circumstances in which 

one would be true and the  other false. If there are no such circumstances then 

they have the  same meaning and if the only such circumstances depend upon 

the  disposition of some huma n actor referred to in the sentences then they  are 

said to have nominally the same meaning. This definition is used  to try to 

simplify the problem sufficiently to produce a working  question -answering 



 
87  

system. More subtle difficulties can be considered later  by the 

modification of the working system.  

During the analysis of English into PIDGIN, concepts may be  introduced 

that do not occur explicitly as words in the English  sentence, and words in the 

sentence may be lost. During synthesis of  PIDGIN into English  some concepts 

may not be realised as words and  some concepts may be translated as 

complete English phrases. Further,  a single English word might be the 

realization of a number of concepts;  this is called "lexical" ambiguity. For 

example, the word "light"  may mean LIGHTWEIGHT, LIGHTCOLOUR or 

LIGHTBULB. The converse is not  true, that is PIDGIN is not ambiguous, no two 

concepts with  different meanings have the same name. Some concepts are 

realised  in English as word endings and inflexions, for example, those of  

number, gender and tense.  

The rest of this section deals with all the different classes  of concept 

handled by PIDGIN -  connector, act, nominal, relation and  modifier.  

2.3A The Connectors  

The connectors are those concepts that are used .to link  together 

conceptions in order to form thoughts.  

They are used to state knowledge and to control problem solving.  There 

are eight connectors -  SUGGEST, ENABLE, PRODUCE, CAUSE,  THEREFORE, 

THROUGH, WHILE and IF. Each connector is associated with  an ABL program 

that is  evaluated if a thought containing that  connector is evaluated (see 

Section 2.1.1 for the evaluation rules).  In general if a thought is asserted then 

that thought will be stored  in the memory and if a thought is evaluated as a 

question then the  me m ory will  be searched for a matching thought.  



 
88  

Before describing how the knowledge stored in the form of  

thoughts is made use of by the rest of the system it is necessary to  explain the 

justification fo r just the eight connectors cho sen. The  connectors arise from a 

simple world description that arose from a  consideration of the types of 

connectors described by Schank (1973b)  and Abelson (1973). The world 

description is as follows:  

i)   At any moment of time, t, the world can be described completely  

by a band of states . This band is called the world model.  

ii)   Two moments of time  are described by different band of states.  

iii)   An action is a function from one world model to another. An  action 

can be enabled by zero or more states in a world model,  that is, the 

action cannot occur unless those states are in the  first world model. An 

action can produce zero or more states,  that is, it can add those states 

to the second world model.  

iv)  Any action may cause or block another action.  

v)   A cause or block may cause or block an action.  

vi)  Between any two moments of time there is another moment of  

time. Thus as an action takes a finite length of time it can  be analysed 

into sub -actions, that is, functions between world  models occupying 

intermediate moments of time. These  sub -actions may be specified by 

saying how an action is  achieved through or by means of one or more 

other actions.  The above points can be diagrammed as:  



 
89  

 

This shows how five of the connectors are related; the other  three are 

fitted into the above model later in this section.  

2.3A 1. SUGGEST (state -state)  

All the connectors playa dual role in the system; they enable  natural 

language sentences to be stored in the memory in a suitable  form  for later 

interrogation and they act as controlling and guiding  information  for the PIDGIN 

problem solver described later.  

The SUGGEST connector is used to link two states (a state is a  

conception in which the act is BE) together. The linkage roughly  corresponds to 

implication or causation, thought not logical implication  which i s handled by the 

IF connector.  An example of a natural language sentence which would be  

translated into a thought involving SUGGEST is:  

"In chess control of th e centre often leads to victory ."  

It will be seen later how such information is used by the PIDGI N 

problem solver to form schemes and from these, plans.  

In fact SUGGEST may be used to join state -choices, that is, a  

conjunction and disjunction of states. For example:  

THE QUEEN 1  <BELONG A PLAYER 1> <ON THE BOARD> AND  



 
90  

THE QUEEN 2  <BELONG A PLAYER 2> <ON THE  

BOARD>[NOT]  

 SUGGEST THE PLAYER 1  <WIN THE GAME>.  

SUGGEST is like CAUSE only between states rather than between  

actions.  

2.3A2. ENABLE (state -action)  

This connector is used to specify what state(s) must hold before  an 

action can be performed as a command ( see Section 2.4.1). Abelson  (1973) 

tries to systematize the basic states that must hold for each  of the acts 

described by Schank to be performed. He distinguishes  between two types of 

enab1ement -  instrumental control, where the  state represents the main a ctor 

of the action being in a position to  use the instrument(s) of the action, and 

social contract, where the  state represents the actor of the action being the 

agent of a prior  actor in a sequence of actions. PIDGIN does not distinguish 

between  these two types but regards both as examples of a more general 

notion  of enab1ement.  

There are no enabling conditions built into the system and if no  

enabling conditions are specified for an .action then that action cannot  be 

obeyed as a command. However, if a match ing action has the modifier  CAN 

then the action is allowed regardless of enabling states.  

If some action is inappropriate in certain circumstances then it  is 

necessary to define explicitly those circumstances using the ENABLE  connector. 

For example, enabli ng conditions can be defined to prevent  the system from 

making illegal chess moves:  

A [COLOUR] PIECE <ON A SQUARE 1> [NOT] BE  

 ENABLE  

 THE PERSON <POSS A [COLOUR] PIECE 1>  

  TRANSFER THE PIECE 1  A SQUARE 2  THE SQUARE 1 .  



 
91  

That is, for a person to move a piece to a square the square 

cannot  already be occupied by a piece of the same colour.  

Before the system carries out any action it first searches the  memory 

for a matching action with the modifier CAN; if none is found  it searches for all 

matching enabling thoughts , if any are found then  a further check is made to 

confirm that all the states enabling that  action are true.  

Although some enabling conditions apply in most circumstances,  for 

example, for a person to grasp an object they must be physically  close to that 

object, most enabling conditions depend upon the circum  stances. For example, 

the above chess rule does not apply if there is  no game of chess taking place. 

To cope with this problem the enabling  condition must be made more complex. 

The state requirement o f an enabling condition may be in fact a state -choice, so 

the above condition  could be modified to:  

A PERSON DO A CHESSGAME AND  

A PIECE<BELONG THE PERSON><ON A SQUARE>[NOT]BE  

ENABLE  

THE PERSON TRANSFER A PIECE 2<BELONG THE PERSON>  

A SQUARE 2  THE SQUARE.  

This  also illustrates the fact that it is possible to state a  condition in a 

number of different, but equivalent, ways.  

2.3A3 PRODUCE (action -state)  

This is used to specify those states that result from obeying an  action 

as a command. Like enabling conditions there are no produce  conditions built 

into the system but there are a number of basic  enable and produce conditions 

in the general knowledge. Produce information is in some ways analogous  to 

PLANNER's antecedent or asserting  theorems in that it specifies h ow the world 

model is to be amended after  a command has been obeyed. As this determines 

both how fast the memory  grows and the range of questions that the system 



 
92  

can answer about its  actions, a compromise must be reached. 

Certain states do not need to  be s pecified as they can be deduced from the 

information available in  order to answer a question, but the total set of states, 

the world model,  must reflect a true picture of the world otherwise 

inconsistencies will  not be detected and commands will not be ena bled. This is 

because when  the system checks for inconsistencies and when it checks 

enabling conditions no deductions are performed, they are simply checked 

against the  current world model. So, if more enabling conditions are specified 

then  more produce co nditions must also be specified in order to ensure that  the 

world model contains the necessary states.  

A typical primitive produce condition that would probably be in  the 

general knowledge is:  

A PERSON TRANSFER AN OBJECT A PLACE 1  A PLACE 2  

PRODUCE THE OBJEC T <LOC THE PLACE 2>.  

2.3A4 CAUSE (action -action)  

The cause connector has been thoroughly discussed by Schank  

(1973b). It is realised in English in a great many ways, some explicit  such as 

"because", "when" and "since" and some implicit e.g. "fly",  "prevent"  and 

"want". It is the combination of the few acts defined  by Schank with the cause 

connector that enables him to encompass the  meaning of so many English 

verbs with so few acts. For  example:  

"John killed his teacher."  

becomes:  

"John does an action that ca uses his teacher to  change from the 

state of being alive to the  state  of being dead."  



 
93  

2.3A 5 THEREFORE (cause -action)  

This connector is used to link a cause with an action, for  example:  

"As John stopped Mary going I'll go."  

becomes:  

"John carried out some a ction that caused Mary  to not transfer 

herself from some place to  another and therefore I did transfer 

myself from  some place to that place."  

or, in PIDGIN:  

JOHN DO SOME ACTION  

CAUSE MARY [NOT] TRANSFER SELF A PLACE 1  A PLACE 2  

THEREFORE SELF TRANSFER SELF A  PLACE 3  A PLACE 2 .  

2.3A6 THROUGH (action -action)  

This connector is used to specify the means by which an action  is 

carried out. It corresponds to what Schank calls the instrumental  case. It is 

treated here as a connection between conceptions rather  than as a part of a 

conception because every action can be divided into  sub -actions and these sub -

actions into further sub -sub -actions and so  it is more convenient to deal with it 

in the same way as other relation  ships between conceptions, namely by means 

of the thought structure.  Many verbs translate to the same basic act but with a 

different THROUGH  action, for example, walk, run, fly, drive and ride are all 

concerned  with the basic action of transferring an object from one place to 

another,  but they all differ in the means by which this is achieved. This is  

expressed in the deep structure by the use of different THROUGH actions,  for 

example, walk is transfer THROUGH moving one's legs, run  is transfer  

THROUGH moving one's legs quickly. Further, some verbs corresp ond to  very 

complex deep structures if their full meaning is to be extracted,  for example, 

"drive" refers to a whole series of complex actions the  total of which is to do 

with controlling a car. However, this is not  a limitation of the notation but a 



 
94  

posit ive advantage. The complexity  of the structure corresponds to 

the level of the systems knowledge of  the concept.  

Driving involves a whole series of interrelated actions, and what  any 

person understands by the word depends upon that person's knowledge  of 

th ese activities. A child, an experienced driver and a racing -car  driver all have a 

different understanding of the verb "drive". In fact  it could be argued that every 

individual has a slightly different under  standing because of their different 

experiences, but common to all of  these there is the basic notion that driving 

concerns moving from one  place to another using some vehicle. Similarly the 

structure that  PIDGIN generates for the ver9 "drive" represents the systems 

knowledge  of driving. This may change as the system is given more knowledge,  

for example, the system could be given more information concerning the  sub -

actions THROUGH which the basic action of transferring is carried  out in the 

context of driving.  

An interesting aspect of the THROUGH knowledg e of the system is  that 

it provides a basis for adding the capability for actually manipulating the world 

by means of some robotic facility. The breaking down  of actions into sub -

actions is precisely the analysis required in order  to determine the basic ac tions 

that the robotic facility is capable of  performing. In such a system there would 

be a continuous linguistic  link between the complex actions that the system was 

capable of talking  about and the simple actions that it was capable of 

performing. This  link would be provided by the THROUGH connector. For 

example:  

Lift block THROUGH Find block and Move hand to  

 block and Grasp block and  

 Move hand up.  

Find block THROUGH If not Perceive block Move  

 visual receptor  



 
95  

2.3A7 . WHILE (conception -conception)  

This connector is used simply to join two conceptions that took  place at 

the same time. It could be incorporated in the conception by  extending the 

possible time modifiers to include complete conceptions.  However, this would 

subordinate one of the conceptions t o the position  of a modifier and it is often 

the case that both conceptions are of  equal importance. It would also be 

possible simply to store both conceptions together with the fact that they both 

occurred at some particular  time, t. However, the WH ILE co nnection implies 

that not only did the  conceptions occur at the same time but that they were 

also connected  in some undefined way. For example, "I ran the bath while the 

child  got undressed" implies the bath was run for the child, "I made the tea  

while the  others prepared the sandwiches" implies a communal meal, and  "Nero 

fiddled while Rome burned" implies something other than simply  that they 

occurred at the same time. The WHILE connector enables the  system to store 

this knowledge without needing to explic ate the  implication.  

2.3A8 IF (conception - rule)  

This connector forms the basis of the system's deductive capability.  It 

corresponds to the consequent theorems of the PLANNER programming  

language. The way in which IF rules are used is described later  (Deduc tion, 

Section 2.4.3), but their use can be simply illustrated by  means of an example:  

A PERSON 1  <TALLER A PERSON 2> IF  

THE PERSON 1  <HEIGHT =N METRE>  

AND THE PE RSON 2  <HEIGHT <LESS N> METRE>.  

is one of the possible ways of defining the relation "taller". Then  if:  

MARY <HEIGHT 1.7 METRE>.  

JOHN <HEIGHT 1. 8 METRE>.  

it is possible for the system to deduce the answer to the question:  



 
96  

JOHN <TALLER MARY>?  

by using the IF rule. This is done by first matching the question  against 

all the conceptions in the memory to s ee if it can be answered  directly and 

then, if none match, to see if it can be matched against  any IF rule. In the 

above example the question does match the IF rule  (the exact rules for 

matching are described in Section 2.4.2), in this  case the specific in formation 

contained in the question is substituted  for the more general concepts in the 

rule giving:  

JOHN <HEIGHT =N METRE>  

 AND MARY <HEIGHT <LESS N> METRE>?  

that is, has Mary  a height that is less than the height of John. This  

new question is answered fr om the memory using the  same procedure 

as before but in this case it can be answered directly from the two assertions. 

This results in the IF rule succeeding and thus the original  question succeeding. 

This would normally result in the controlling  program  generating the response:  

JOHN <TALLER MARY>.  

or, in English:  

Yes.  

2.3B The Acts  

The ten acts of PIDGIN (including BE) are based on the acts  defined by 

Schank (1973b). They are not intended to exhaust the  possibilities of all English 

verbs but to enable enou gh verbs to be  handled to build up a reasonable 

vocabulary for a question -answering  system. The question as to the minimum 

number of acts required has not  yet been answered. However, Schank suggests 

that the number may be very  small, perhaps less than twen ty. Less than 

twenty certainly seems sufficient to encompass a large part of everyday 



 
97  

English. Schank has  14 -  16 acts in his notation but five of these are 

concerned with the  senses and I have compressed these into one act 

(PERCEIVE). Also he  has the acts  PROPEL and GRASP which I have omitted; the 

idea of applying a force is included as a modifier and GRASP is included in 

MOVEing  the hand around an object. I have introduced the act IDENTIFY as it  

seems necessary to cope with the type of pattern matching co mparisons  

required in many problem domains, for example, the chess end -game  

considered later. Further I have changed the names of some of Schank's  other 

acts in order to try to make their meaning more obvious from their  name.  

It is interesting to compare w ith the above the ten operation words  . of 

Basic English (Ogden 1933), "make", "put", "take", "keep", "let",  "give", "get", 

"go", "come" and "do" which, with the auxiliaries and  directives, immediately 

give the equivalent of 200 English verbs. It  can be se en that nine of the ten are 

roughly handled by the two acts  PASS and TRANSFER in PIDGIN.  

The acts are the base of the system as they define all the  possible ways 

in which actors may be combined. Because there are so  few and because no 

more are required, th e complete description of these  acts is simple to set out 

and will remain valid no matter how far the  system is extended. All growth of 

the system's knowledge proceeds  through new combinations of the ten acts 

with a growing number of  actors.  Although the a cts have names which are 

English verbs this is  only a mnemonic convenience to help the reader. The 

actions performed  by the acts are close to just one of the many different 

meanings and  shades of meaning of the verbs.  The following diagram shows a 

simple f ramework that expresses  one way in which nine of the acts are related:  



 
98  

 

This should be seen together with the description at the beginning of 

the last division where the idea of an action as a state change  is put forward in 

order to discuss the possible c onnections between  actions. The above diagram 

shows the possible actions. The only act  not included is PASS; this is because 

this act expresses the complex  idea of ownership and this involves at least two 

thinkers. The diagram  shows the possible ways in wh ich any state may be 

transformed into  another. The time axis is horizontal with the later time on the 

right,  although COGITATE may extend over a long time period and involve 

many  TRANSMIT acts. The diagram represents the way in which the acts fit  

together and it is shown simply to give the reader some idea of the  motivation 

for choosing the ten acts described next.  

There are two other acts shown in the syntax (Section 2.1.1),  TRANS 

and TROW, these are not acts but stand in place of acts. TRANS  may be 

substi tuted for any of the acts MOVE, PASS, TRANSFER, and  TRANSMIT, and 

TROW for any of COGITATE, IDENTIFY, PERCEIVE and DO.  

2.3B 1. BE  

ANY THING BE.  

This act is separate from the others in that it is used to  construct a 

state rather than an action; in this sense  it is not  really an act at all. It is used 

to give an actor the status of a  conception. The above conception gives the 



 
99  

most general form of a  state, where the concept THING can be 

substituted for any other entity  or group concept. In general it is used to  

specify the attributes or  relations of an entity or group concept at any particular 

time. For  example:  

MARY <AUNT JILL>.  

A [RED] BOX <ON THE TABLE>.  

[HAPPY] JOHN .  

FIDO <SUB A DOG>.  

The set of all such states known to be currently true by the  system is 

called the "world model" because it represents inside the  system a picture of 

the current static state of the external world.  Note that the input language 

syntax allows BE to be omitted.  

2.3B2. BECOME  

ANY THING BECOME SELF.  

This act is the most primitive of all the acts and the most  general. It 

enables the initial and final state of a transformation  to be specified without 

needing to describe how the transformation was  achieved.  

It is usually used to specify some change in one or more of the  

qualifiers of an entity or group concept. The act is restricted in  that the object 

must always be the same nominal as the subject, so by  the rules of the input 

language the object nominal is always SELF.  For example:  

A [RED] BOX <LOC FLOOR> BECOME SELF <LOC TABLE>.  

BOX 1  BECOME SELF <ABOVE BOX 2>.  

BOOK  <BELONG JOHN> BECOME S ELF <BELONG BILL>.  

BECOME is useful when an action is required but it is not known  or not 

important which act is involved. For example, the CAUSE  connector requires an 

action and BECOME can be used to supp ly it in  the cases where it is only the 

final state that is important, for  example:  



 
100  

Matches cause fires.  

SOME MATCH <LOC A PLACE> BECOME [ALIGHT] SELF  

 [CAN] CAUSE THE PLACE BECOME [ALIGHT] SELF.  

2.3B3. COGITATE  

ANY THINKER COGITATE A THOUGHT.  

Like all the  acts COGITATE can be used in two ways by the PIDGIN  

system, as "data" forming part of a deep structure representation of  some 

linguistic knowledge and as "program" when that same deep structure  is 

evaluated. The action taken depends upon the context of ev aluation;  if the 

conception is an assertion then the acts add the conception to  the memory; if a 

question then a matching conception is retrieved from  memory; but if it is a 

command then the action taken depends on the  particular act. In the case of 

COGITA TE there are a number of  possibilities, depending on the object:  

i)   Judging. If the object is a conception then it is checked to  see if it 

is positive or negative (see Division 2.4.4A), if  positive the conception 

succeeds, if negative it fails.  

ii)   Decis ion. If the object is the concept ACTION then if its  reference 

is a conception the action taken is the same as in (i),  if the reference is 

a choice of actions then the best (most  positive value) is selected and 

made the reference of ACTION.  If the referenc e is anything else then 

the action taken is as  in (i) and the conception found is made the 

reference of ACTION.  

iii)   Planning. If the object is the concept PLAN then COGITATE will  

form a plan (see Section 2.4.4) and make it the reference of  PLAN. If 

the r eference of PLAN is already a plan (a choice of  actions) then the 

plan will be checked and corrected if un satisfactory . 



 
101  

iv)  Scheming. If the object is the concept SCHEME then a 

new scheme  is formed (see Section 2.4.4) and made the reference of 

SCHEME. If t he reference of SCHEME is already a scheme (a choice of  

states) then the scheme will be che cked and corrected if  unsatisfactory.  

v)   Generalising. If the object is the concept POSSIBILITY then a  

conception is selected at random and generalised (see Section  2.4.1) 

and made the reference of POSSIBILITY. If the reference  is already a 

conception then that conception is generalised.  

In the above where ACTION, PLAN, SCHEME and POSSIBILITY are 

mentioned  any concept for which these are substitutable is accepted.  

If  a plan or scheme cannot be formed, or if a conception cannot  be 

consistently generalised or an action is negative then the  COGITATE conception 

will fail.  

As "data" the act is used to incorporate the meaning of many  English 

mental -action verbs, for example , "ponder", "consider", "plan",  "think", 

"wonder", and "decide", although some uses of these verbs can  be better 

realised by TRANSMIT or DO. Some examples of the use of  COGITATE are:  

John wondered whether to go to the cinema.  

JOHN COGITATE <JOHN TRANSFER S ELF A PLACE CINEMA>.  

John loves Mary.  

JOHN COGITATE <MARY BE>  

 CAUSE JOHN BECOME [LOVE] SELF.  

John wondere d if he'd done the right thing.  

JOHN COGITATE <JOHN [PAST] DO AN ACTION> . 

John  decided to give Bill the book.  

JOHN COGITATE <JOHN PASS BOOK SELF BILL> . 

2.3B4. DO  

ANY LIFE DO ANY THOUGHT.  

This act is used to carry out a thought, which may be a  conception, 

program (i.e. a conception -choice) or plan:  



 
102  

i)  Conception: The conception is evaluated; this is 
equivalent to:  

SELF TRANSMIT A THOUGHT HERE SELF.  

ii)   Program: the program is evaluated; if it fails then any side  effects 

are automatically undone.  

iii)   Plan: the first action of the plan is removed from the plan and  

evaluated.  

This act occurs in the deep structure of verbs involving a number  of 

unspecified  actions, for e xample, "make", "build", "grow" and "drive"  and also 

verbs in which the actions involved are even less specific,  such as "like" and 

"want".  In some cases it may be possible to say what some of the actions  are 

but not all. In these cases DO e xpresses the fact that not all the  actions 

involved have been specified, for example:  

John grows roses  

JOHN DO <JOHN TRANSFER FERTILISER A BAG  

SOME GROUND <NEAR A ROSE>  

AND JOHN TRANSFER SOME WATER A PLACE  

SOME GROUND <NEAR A ROSE>>  

CAUSE SOME ROSE BECOME [GOOD] SELF.  

In this way it is possible to add to the systems knowledge of what  

growing involves and yet at the same time to include the fact that  growing is 

more than that.  

2.3B5. IDENTIFY  

(ANY THINKER ANY LIFE) [CAN] IDENTIFY ANY PATTERN.  

The object of I DENTIFY is compared by the subject with its  perceived 

view of the world. If the subject is not a THINKER then  this view must be the 

visual field of the subject as perceived by the  PERCEIVE act. Otherwise, it may 

be an internal mental view. For  example:  

FID O<BELONG JOHN>IDENTIFY JOHN<NEAR DOG>.  



 
103  

but:  

JOHN IDENTIFY FIDO<BELONG JOHN><FAR JOHN>.  

That is, JOHN can compare an internal mental image of his dog with  

other internal mental images (say to describe his dog or to identify a  picture of 

his dog), but his do g can only compare its internal mental  image of John with 

its visual impression of John. Thus IDENTIFY is used  to represent the deep 

structure of verbs such as "recognise", and "identify".  

However, the IDENTIFY act was not introduced so much for its use  in  

allowing the deep structure of certain verbs to be represented more  accurately, 

but because it could be associated with a new range of capabilities for the 

PIDGIN system, namely a powerful pattern -matching ability.  This pattern -

matching ability was found to be desirable when tackling  complex problems 

such as the chess endgame problem because without it a  long -winded linguistic 

description was required together with an even  more complex set of IF rules so 

that the linguistic pattern matcher could  deduce tha t "above and to the left" is 

the same as "left and above" and  so on, on the chess board.  

From the syntax rules (Section 2.1.1) it can be seen that a pattern  may 

be either a lattice, a grid, a line or an actor. A lattice is a  three -dimensional 

pattern, a gr id is a two -dimensional pattern, and a  line is a one -dimensional  

pattern of actors. When the IDENTIFY act is  evaluated as a command the 

pattern which is its object is compared with  the pattern which is the current 

reference of the concept VIEW.  Depending o n the modifiers of IDENTIFY, its 

object pattern and the VIEW pattern the IDENTIFY conception will either 

succeed or it will fail. A simple pat tern is:  

<< A B C> <D E F> <G H I>>  

Which represents the grid:  



 
104  

A B C  

D E F  

G H I  

As the members are actors they may  be bands or classes of actors, for 

example:  

<<WALL        WALL        WALL>  

<TABLE [CUP SAUCER] TABLE>  

<TABLE         TABLE  (SPOON FORK)>>  

If this pattern was the reference of VIEW then the command:  

SELF IDENTIFY SOME CUTLERY.  

would succeed leaving the r eference of the concept CUTLERY equal to 

(SPOON FORK). Of course, if the conception had been:  

SELF IDENTIFY A FORK.  

it would have failed (according to the matching rules for actors, Division 

2.4.2B). A pattern can be set up in VIEW by the TRANSMIT act (see  Part 10), 

for example:  

SELF TRANSMIT  * <<A  SQUARE WKING A SQUARE>  

   <A SQUARE WPAWN A SQUARE>>  

   HERE VIEW  

would transmit the 2x3 grid to VIEW.  

The view (the pattern that is the reference of the concept VIEW) can be 

regarded as the systems "camera" pict ure of the world and also as its internal 

imagination. However, it will become outdated as soon as any actor in the view 

is moved. To prevent this if any object is transferred all view are examined and 

suitably updated. These changes are side -effects so if  the rule containing the 

transfer later fails then they will all be undone automatically. This is useful 

during problem solving because it enables the system to tryout possibilities "in 

its imagination" so that they can be rejected if unsuccessful.  



 
105  

The mat ching ability of IDENTIFY is based on the PIDGIN 

conception  matcher described in Section 2.4.2. A conception can itself be 

thought  of as a pattern that is a linguistic picture of the world, each actor  in it 

is a quantified and qualified nominal concept (ca lled Picture  Producers by 

Schank), and the act specifies the framework in which the  actors sit in certain 

relationships (subject, object, modifier and so  on) . 

If the object pattern is a single actor then it is simply compared  with 

each actor in the view an d will succeed if anyone succeeds. However  if both the 

object and view have dimensionality then the possible comparisons become 

more complex. To begin with the object pattern must  be the same or a lower 

dimensionality than the view and further, if  they hav e the same dimensionality 

then the object pattern must have the  same number or fewer members. The 

object pattern is then "passed over"  the view in the following order:  

A lattice is a series of applications which are grids; the first (that is the 

first to b e matched) is the FRONT -most, the last the BACK -most.  

A grid is a series of lines; the first is the ABOVE -most, the  last the 

BELOW-most.  

A line is a series of actors; the first is the LEFT -most, the  last the 

RIGHT -most.  

FRONT, BACK, ABOVE, BELOW, LEFT and RIGHT are relations used to  

specify the relative positions of two actors. If the view is a lattice  all six apply, 

if a grid then only ABOVE, BELOW, LEFT and RIGHT, if a  line only LEFT and 

RIGHT, and if an actor then none of them.  

IDENTIFY may be modified b y a degree and a type modifier in order  to 

further describe the matching algorithm required. The degree modifier may be 



 
106  

MATCH, SIMILAR, ROTATE or MIRROR and MATCH is assumed if  the 

degree modifier is omitted. The type modifier may be SAME, RSUB,  VAGUE, 

TYPE or LIKE to specify how each actor is to be compared.  RSUB is assumed if 

the type modifier is omitted. Thus a total of 20  different styles of matching may 

be performed.  

a. Degree Modifiers  

i)   MATCH. This is the default if the degree modifier is omitted.  It 

specifies that the object pattern and view are to be compared  in all the 

possible ways that, without rotation, the object pat  tern can be entirely 

"covered" by the view. One pattern entirely  covers another if and only if 

every member of the second patte rn  has a corresponding member in 

the first pattern. Another way of  describing this is to imagine the view 

as an infinite lattice  (or grid, or line) every point of which contains the 

concept  THING except for those points explicitly specified by the 

pattern  itself. The concept THING can be substituted for any other  

concept so, as it is being matched against, it will fail (unless  matched 

by the concept THING). Similarly, the object pattern should be 

imagined as an infinite lattice (grid, line) of THING points.  Matching 

starts at the front, top left and the object pattern is "slid" over the view 

in the order described above  (cf. reading a book). This continues until 

the back, bottom,  right is reached, when the IDENTIFY conception will 

fail, or  until a match is f ound, when it terminates the search and  

immediately succeeds.  A 2x2x2 object pattern can thus be compared at 

eight different  positions on a 3x3x3 view pattern if the degree modifier 

is MATCH. 

ii)   SIMILAR. This is the same as MATCH but will succeed the fir st  

time that more than half the actors of the object pattern are  matched.  



 
107  

iii)   ROTATE. This is like MATCH but at each position the 

object  pattern will be rotated to try to match it. If the object  pattern is 

a line this will involve a maximum of the same n umber  of comparisons 

as a MATCH; if it is a grid it will involve four  times as many and if a 

lattice twenty four times as many.  iv) MIRROR. This is like ROTATE but 

it also tries rotating the  object pattern in the next higher dimension. 

This is only used  ty pically for a line, when twice as many comparisons 

are possible,  and for a grid, when twice as many comparisons as for 

ROTATE are  possible.  To MIRROR compare a 31<:3 object grid with an 

8x8 view grid  involves a maximum of 6x6x4x2 or 288 positions for 

compa rison.  

b. Type Modifiers  

i)   SAME. The above degree modifiers are used to specify how the  

two patterns are to be moved over each other, the type modifiers  are 

used to specify how each pair of actors is to be compared  for a 

successful match. SAME indicates that two actors should  only match if 

they are the same or equivalent (see Section 2.4.2).  

ii)   RSUB. This is the default assumed if the type modifier is  omitted. 

RSUB specifies that the comparison to be made should  be the same as 

that used by the matcher w hen comparing actors in  conceptions (see 

Section 2.4.2).  

iii)   TYPE. One of the facilities of the matcher is to be able to  check 

that two actors are "vaguely" the same; two sorts of  vagueness are 

handled, TYPE and LIKE, plus their combination  VAGUE. 

Most g eneral terms in English are vague in terms of their  extension that 

is in terms of what does and what does not count  as a member of the 



 
108  

set named by the general term. An analogous  feature in 

PIDGIN is created by regarding a concept to be TYPE  vaguely the sa me 

as another concept if it is a member or subset  of the concept which is 

the immediate superset of the first  concept. To put this in PIDGIN 

terms means rephrasing "subset"  and "superset" in terms of 

substitutability. If there are two  concepts, A and B, re lated by th e 

substitutable relation SUB in the form:  

  A <SUB B>  

then B is substitutable for A and is called the category of A.  So for 

example, the category of JOHN might be MAN, and the  category of DOG 

might be ANIMAL. One concept is a TYPE -vague  match to  another if the 

category of the first is substitutable  for the second. The only restriction 

is that if either concept  is an entity concept then the other must be.  For 

example:  

  FIDO <SUB A DOG>.  

  ALL DOG <SUB AN ANIMAL>.  

  ALL CAT <SUB AN ANIMAL>.  

  ROVE R <SUB A DOG>.  

then ROVER is TYPE -vague the same as FIDO, and DOG is TYPE  vague 

the same as CAT, but FIDO is not TYPE -vague the same as  CAT. 

Note that as the number of group concepts increases so TYPE  

vagueness decreases. For example, if dogs are distingui shed as  

ALSATION and POODLE then Alsatian  dogs will only be TYPE -vague  the 

same as other Alsatian  dogs.  

iv)  LIKE. With LIKE -vague comparisons only the qualifiers are  

compared. Two concepts are LIKE -vague if more than half of the  

qualifiers of the concept w ith the least number of qualifiers  (but at least 

one) match some qualifier of the other concept.  For example, if:  



 
109  

  ALL PEBBLE <SUB A [ROUND] STONE  

    <TEXTURE SMOOTH>>  

  ALL EGG <SUB A [ROUND] OBJECT <BELONG A HEN>  

    <TEXTURE SMOOTH >>  

  then PEBBLE and  EGG are LIKE -vague. As the number of defining  

characteristics increases so the number of LIKE -vague concepts  will 

probably decrease.  

v)   VAGUE. This type combines TYPE and LIKE. Two actors are  

VAGUEly the same if the are TYPE -vague the same or if they are  LIKE -

vague the same or if their category concepts are LIKE -vague  the same.  

2.3B6. MOVE  

ANY LIFE MOVE ANY BODYPART A PLACE 1  A PLACE 2 .  

This act is used to express verbs involving bodily movement,  such as 

"punch", "walk", "eat" and "breathe".  The body part s pecified as object must be 

part of the subject  carrying out the action, and the places must be situated 

inside or  close to the body of the subject. The act is used to express the verbs  

concerned with ingestion ("drink", "eat", "breathe") as well as  expella tion 

("breathe"). For example, breathing consists of inhaling  ("transferring air from 

near the body to lungs by moving chest out")  and exhaling ("transferring air 

from lungs to near body by moving  chest in"). The movement of this act 

involves two places, b oth  outside but near the body, for example, eating may 

involve moving the  hand from the food source to the mouth, walking involves 

moving each  leg alternately forward.  

John punched Bill.  

JOHN [<DEGREE VIOLENT>] MOVE FIST A PLACE 1  

    A PLACE 2  <LOC BILL> . 

John is eating a sandwich.  

JOHN TRANSFER A SANDWICH A PLACE 1  STOMACH  

 THROUGH JOHN MOVE HAND A PL ACE2  THE SANDWICH  

    <L OC THE PLACE 1>  

 AND JOHN MOVE SOME FINGER A PLACE 3  

  <FRONT THE SANDWICH> A PLACE 4  

  <BACK THE SANDWICH>  



 
110  

 AND JOHN MOVE HAND THE PLACE 1  MOUTH.  

The last example illustrates how the THROUGH connector can be  used 

to fill in the details of an action to virtually any level of  detail. In both examples 

the object and any body part mentioned are  assumed to belong to the subject 

unless otherwise st ated.  

Evaluated as  a command it is this act that would be responsible  for 

controlling any robotic activity. For example, in a Winograd type  of block 

moving environment the MOVE act would be used actually to  control the crane. 

The THROUGH connector would be  used in such  circumstances to describe the 

required activity down to the level of  individual movements that the devices 

attached to the system were  capable of being commanded to do. It is assumed 

that with any set of  devices there would be a certain group  of primitive 

commands for  controlling those devices and that higher level commands could 

be constructed using the THROUGH connector.  

2.3B7. PASS  

ANY THINKER PASS ANY OBJECT ANY OWNER 1  ANY OWNER 2 .  

This is one of the transfer acts (MOVE, TRANSFER, TRANSMIT and  

PASS). In this case it is the possession of an object that is  transferred. This 

transfer is performed by the subject, who may be  the donor (OWNER1 ) the 

recipient (OWNER 2) or neither. The act does  not imply ownership in a legal 

sense but possession in a  social sense.  It is the possession expressed by the 

relation POSS.  

The act will usually be enabled by OWNER 1 possessing (POSS) the  

object OBJECT and it will usually produce OWNER 2 possessing the OBJECT  and 

OWNER1 not possessing it. Alternatively, the act may be enabled  by OWNER 1 

having (the HAS relation is usually defined in the general  knowledge) the 

OBJECT and produce OWNER 2 having it without OWNER 1 losing it. The second 



 
111  

type of transfer is that associated with  diseases and knowledge and 

it is also the t ype of "passing -on"  transfer that occurs with the act TRANSMIT.  

The act occurs in the deep structure of verbs associated with  transfer 

such as "give", "take", "sell", and "buy". These will often  be accompanied by a 

corresponding change in location but this  is not  necessary.  Some examples are:  

John gave his book to Bill.  

JOHN PASS BOOK SELF BILL.  

John took a book from Bill.  

JOHN PASS BOOK BILL SELF.  

2.3B8. PERCEIVE  

ANY LIFE PERCEIVE PATTERN.  

This act is the instrument (specified using the THROUGH  connector) of 

all acts concerned with sensing the external world,  namely those TRANSMIT 

acts in which the source is one of the sense  organs.  I t can also be used to 

specify that the subject "sensed" the  object without needing to specify the 

particular sense involved.  For example:  

Bill saw John kissing Mary.  

BILL TRANSMIT <JOHN TRANSFER MOUTH A PLACE  

      MOUTH<BELONG MARY>>  

     EYE SELF  

  THROUGH BILL PERCEIVE [JOHN MARY].  

John smelt the rose.  

JOHN TRANSMIT [SMELL] ROSE NOSE SELF  

 THROUGH JOHN PERCEIVE ROSE.  

2.3B9. TRANSFER 

ANY FORCE TRANSFER ANY OBJECT ANY PLACE 1  ANY PLACE 2  

This act refers to the physical transfer of an object from one  location to 

another by the application of some force (animate or  inanimate).  The act would 

typically be enabled by the object being located  at the source location (PLACE 1) 

and would produce the object being  located at the destination location (PLACE 2) 

and not at the source  location. However, more complex conditions and results 

could be  specified, for example, that the force is able to apply itself to the  



 
112  

source place and is sufficient to reach the destination location, that  

the object is transferable, and that the force has access to any instrument 

required to carry out the action.  Some simple uses are:  

John went to school.  

JOHN TRANSFE R SELF A PLACE SCHOOL.  

John and Mary walked to the park.  

(JOHN MARY] TRANSFER SELF A PLACE PARK  

 THROUGH (JOHN MARY] [REPEAT] MOVE 2 LEG  

   A PLACE 1  A PLACE 2 .  

In the current system the TRANSFER act evaluated as a command  

automatically searches the current view for the object specified and  if found 

updates the view to describe the object's new position.  

2. 3B10 TRANSMIT  

ANY THINKER TRANSMIT ANY THOUGHT ANY MIND 1  ANY MIND 2 .  

This mental transfer act is used to transfer between locations  in one 

mind (( i), (ii) and (iii) below) or between minds (( iv), (v) and  (vi) below). The 

following list gives all the possible source and  destination locations for this act:  

i)  HERE. This entity concept can be used in the source position to  

transmit from the object position, or in the destination position  to 

transmit to the object. This can be used in PIDGIN in a way  that is 

ana1agous to assignment in a conventional programming  language, for 

examp le:  

  SELF TRANSMIT A THOUGHT USER HERE.  

would read (and t rans1ate if in English) a thought from the  user and 

make it the reference of the concept THOUGHT.  

ii)  MEMORY. Can be used to recall from memory (source position) or 

to store in the memory (destination position).  

iii)   VIEW. This concept allows the view to be accessed or altered.  



 
113  

iv )  SELF. In the subject position of a conception this 

concept refers  to the subject of that conception. If a thought is 

transferred  to the SELF of the PIDGIN system then this is equivalent to 

transferring to HERE and to MEMORY; similarly if SELF refers to s ome  

other THINKER it is assumed to be transferred to the MEMORY of  that 

THINKER.  

v)   USER. This is a group concept that includes all minds that  PIDGIN 

can transmit to. Therefore, before PIDGIN can communicate  to a 

person the name of that person must be def ined as one for  which USER 

may be substituted, for example:  

  JOHN <SUB A USER>.  

vi)  THINKER. A group concept that includes all minds that can 

transmit and be transmitted to, so:  

  ALL USER <SUB A THINKER>.  

  Verbs that include TRANSMIT in their deep struc ture are, for  

example, "remember", "learn", "speak", "teach" and "listen".  

 John recalled the time they met.  

 JOHN TRANSMIT<SELF<NEAR PERSON >> MEMORY SELF.  

 John told Bill to go.  

 JOHN TRANSMIT<BILL TRANSFER SELF A PLACE 1  A PLACE 2>  

  SELF BILL.  

  When a thi nker is specified as destination it is assumed that the  

thought object is transmitted to that part of the mind of the thinker  

concerned with comprehension, in the case of the PIDGIN system the  

evaluator.  



 
114  

2.3C Actors  

Actors are the PIDGIN equivalent of what  in Schank's notation  would be 

fully qualified picture producers or PPs. An actor is a  qualified entity -concept or 

a quantified and qualified group -concept.  The distinction between these two 

types of actor corresponds to the  distinction between singular an d general 

terms as described in Section  4.2.1. The memory of PIDGIN is thus organised 

at the lowest level into  actors and these are brought together by the acts to 

form conceptions  which may be further organised into thoughts by the 

connectors, thus:  

 

An actor corresponds to a noun group in systemic grammar  that  is it is 

a complete description of an object set, for example:  

John  some apples  

some apples  

all the other ten very worn school books  in the library  

However, an actor is a conceptual unit in PIDGIN and a noun group  is a 

syntax unit in English, therefore there are a number of differences.  For 

example, definite descriptions are replaced by the entity -concept  that is being 

described, and rank -shifted qualifying clauses are usually  replaced by a 

separate  conjoined conception.  



 
115  

2.3C 1 Entity and Group Actors  

An actor is essentially a qualified concept. There are two types  of 

concept, entity and group concepts. An entity concept names or purports to 

name a single object and may not be substituted for any othe r concept (except 

an equivalent entity concept). A group concept is true  of each, severally, of any 

number of objects. Corresponding to these  two types of concept there are two 

types of actor, an entity actor  which is an entity concept qualified by other 

concepts, and a group  actor which is a group concept quantified (to define the 

number of  objects being mentioned) and qualified by other concepts. The 

distinction between entity and group concepts runs through the complete 

system.  

A subscripted group concep t is treated as the same concept as its  

unsubscripted form except that it may have a different reference, but  each 

subscripted entity concept is treated as a different (entity)  concept, with a fixed 

reference.  

A new concept is defined by specifying the con cept that can be  

substituted for it, using the SUB relation. This concept must be a  group concept 

which has itself been previously defined in this way.  The complete set of 

definitions serves to define the relation of each  concept to another and the 

complet e set forms a tree, at the root of  which are the group concepts which 

'are built into the initial system,  for example, the group concept THING. The 

built - in concepts have  special features associated with them, for example, the 

acts, which are  entity concep ts, have already been described. The relations are 

group  concepts with certain properties (described later) that they pass on  to 

any concept for which they may be substituted. The primitive  knowledge will 

usually contain a series of definitions that set up  a range of new concepts that 

are then used to define the possible subject,  object, source and destination 



 
116  

actors for each of the acts as shown  in the last division. These 

concepts form the basis of the world view  set up later by the general and 

specialist  knowledge.  

The following parts deal with the possible quantifiers and qualifiers  of 

these concepts in order to try to show the range and limitations of  the actor 

structure in PIDGIN.  

The following definitions show part of a typical primitive know  ledge 

base that would organise the nominal concepts in a manner consistent with the 

model conceptions given in the last division:  

ALL FORCE <SUB A THING> . 

ALL OWNER <SUB A THING> . 

ALL PLACE <SUB A THING> . 

ALL OBJECT <SUB A PLACE> . 

ALL BEING <SUB A THING> . 

ALL THIN KER <SUB A BEING> . 

ALL LIFE <SUB A BEING>.  

ALL BODYPART <SUB AN OBJECT> . 

ALL BODYPART <PART A LIFE> . 

ALL MIND <SUB A PLACE> . 

ALL MIND <PART A THINKER> . 

ALL MEMORY <SUB A MIND> . 

ALL USER <SUB A MIND> . 

ALL VIEW <SUB A MIND> . 

HERE <SUB A MIND> . 

SELF <SUB A US ER>.  

2.3C2. Quantifiers  

This structure occurs only within a group actor. It defines the  number 

of the nominal concept as being equal to, more than, less than  or 

approximately equal to an arithmetic expression. The simplest  form of an 

arithmetic expression is a number, thus:  

three books    3 BOOK  

more than four books  <MORE 4> BOOK  

about one hundred books  <ABOUT 100> BOOK  

More complex expressions involve the addition, subtraction,  

multiplication and division of numbers, numeric "variables" and  actors:  



 
117  

Mary is twice John's age.  

MARY <AGE < MULT =N YEAR <OLD JOHN> 2> YEAR>.  

That is, the number of years of Mary's age is equal to two multiplied  by 

the number of years of John's age (N), so if:  

20 YEAR <OLD JOHN>.  

Then the system can calculate that:  

40 YEAR <OLD MARY> . 

The other quantifier, ALL, plays a special role, it is not used  to signify a 

particular numeric quantity but is used refer to the  group as a whole, for 

example, in setting up definitions and attributes  of the complete group.  In 

order to discuss the adequ acy of the quantifier construction  in PIDGIN a few 

English quantifiers will be examined to see if, and  how, they might be 

translated into PIDGIN.  The following list gives a few English quantifiers:  

very  

nearly, almost  

all, both, at least, half, third, quar ter  

a, no, the, some, any, each, another, neither,  every, several  

other, same, few, certain  

one, two, three ... first, second, third  

The quantifiers concerned with approximation ("very nearly",  "nearly", 

"almost", "approximately", "aboutl1 and so on) are h andled  by the quantifier 

comparator ABOUT. This comparator assumes an  (arbitrary) variation of 25% 

either side of its argument. If necessary  PIDGIN could be altered to allow an 

explicit variation to be stated to  cope with the difference between say "very 

nearly" and "nearly".  However, it is very difficult to quantify such variations as 

they  seem to depend on the magnitude of the quantity, the concept being  

quantified and more particularly with the use to which the assertion  is being put 

(for example, a casu al remark opposed to a scientific  report). These difficulties 

though are difficulties of translation,  of deciding on the implied variation, not 

limitations of the method  of representation. If PIDGIN were extended to allow a 



 
118  

variation to be  explicitly state d then this could probably best be 

done by removing  the ABOUT comparator and allowing the EQUAL, MORE and 

LESS comparators  to take another parameter that specified the variation as a 

percentage.  The present ABOUT comparator would then correspond to the 

EQUAL comparator with an explicit variation of 25.  A single number as 

quantifier can be used to cope with the  translation of "a", "an" and cardinal 

numbers:  

a man   1 MAN  

two men   2 MAN  

half an apple  0.5 APPLE  

In order to express averages, superlatives and fra ctions of  groups the 

special relation modifiers MAX, MIN, and MEAN are  introduced:  

The oldest person died.  

A PERSON <AGE <EQUAL =N YEAR <<O LD MAX>  

   ALL PERSON >>  YEAR>  

 BECOME [DEAD] SELF.  

John is average height.  

JOHN <HEIGHT <EQUAL =N METRE << TALL MEAN>  

 ALL PERSON >>  METRE>.  

The average salary of men is twice that of woman.  

<DIV =N POUND << SALARY MEAN> ALL MAN> 2>    

   POUND  

  < <SALARY MEAN> ALL WOMAN>.  

Over one third of the people in the world are hungry.  

<MORE <DIV ALL 3 >>  [HUNGRY] PERSON.  

It will be s een later that only certain relations may be modified by  MAX, 

MIN and MEAN and these relations are those in which it is the  quantity of the 

first actor that is of concern. Thus .the first example  above may be read -  there 

is a person such that his age is t he maximum  for all people and that person has 

become dead. In the second example  the difference between this and:  

=N METRE <<T ALL MEAN> JOHN>.  

should be recognised, the second suggests that John's height changes  

and it is currently average for John.  



 
119  

The th ird example states that the number of pounds of a 

woman's  salary is that of a man's salary divided by two. The final example  

shows the other use of ALL within an expression to stand for the  numeric 

quantity which is the total number of individuals making u p the set described 

by the group actor.  

Other English quantifiers such as "the", "other", and "same" are  not 

really quantifiers, in the PIDGIN sense, but directives to the  analyser to find 

and substitute entity concepts for group concepts wherever possible . In the 

deep structure noun groups qualified by these  determiners will usually be 

replaced at the analysis stage by the  entity concept that they  describe.  

Most of the other quantifiers reduce to the usual logical  universal and 

existential quantifiers. Uni versal quantification is  expressed in PIDGIN using 

ALL, and existential quantification by  referring to a single member of a group 

concept. Some examples are  given below:  

Croydon is near a city.  

($ x) (x is a city ^ Croydon is near x).  

CROYDON <NEAR A CITY> . 

 

There are no five - legged cows.  

- ($ x) (x is five - legged  ^  x is a cow).  

5 LEG <PART A COW> [NOT].  

 

Something pleases Bill.  

($ x ) (x pleases Bill).  

A PERSON DO AN ACTION CAUSE BILL BECOME  

   [HAPPY] SELF.  

2.3C3. Attributes  

An attribute is a concept that c orresponds to what Schank calls  a 

picture -aider (PA) and what in English is a general term that can be  used 

adjectivally. For example, "red book" is true of all those things  which it can be 

said that they are red and they are books.  A new attribute is defi ned in the 



 
120  

same way as a new nominal but  by making it a concept for which 

the group concept ATTRIBUTE can be  substituted:  

ALL COLOUR <SUB AN ATTRIBUTE>  

ALL RED <SUB A COLOUR>  

ALL PINK <SUB A RED>.  

However, it is difficult to build the attributes in to a hie rarchy  that 

clearly defines their inter - relationships, as can be done for  nominals. This is 

especially true for those attributes concerned  with the feelings of living things 

and those concerned with the  value that living things place upon objects. For 

exam ple, Schank uses  the attributes "comfortable" and "upset" (Schankl973b) 

without  bringing in any mechanism for relating them together when it is clear  

that in order to use these attributes correctly the system must be  able to do 

this.  

Psychologists have tri ed to determine these connections between  

attributes experimentally. C E Osgood (Carroll 1969) took 50 dimensions  or 

axes named by different pairs of adjectives and then got college  students to 

rate a large number of nouns along these axes. By factor  analy sis it was found 

that the 50 dimensions could be reduced to  three, which could be roughly 

described as an evaluation, a potency  and an activity dimension. There are a 

number of dimensions that do  not readily fit this tri cho tomy, for example 

serious -humorou s, but the  experiments have been repeated many times in 

different ways with the  same general conclusion.  

In PIDGIN all nomina ls can be rated along three dimensions which  

describe how "good", how "'strong", and h ow "active" that concept is.  These 

three dime nsions can be roughly related to the basic psycho  logical processes 

of a concepts average reward value, the effort  required to produce or resist it 

and the rapidity of movement associated with it. Thus it is assumed in PIDGIN 

that all nominals can be  place d at some point within a three -dimensional 



 
121  

"semantic space" in  which closeness implies closeness of some 

aspect of the concepts  meaning. For example, some actual experimental 

averages bring the  following concepts into the groups shown:  

(i)  abortion, divorc e, bad, feverish, crooked  

(ii)  calm, chair, table, statue  

(iii)  happy, patriot, leadership, brother, progress  

(iv)  art, nice, food, sky  

Of course, any such table of groupings represent a single individual's  

view of the world. The point at issue here is whe ther it is possible  to find some 

common method for finding such a table. The obvious way  is to put together 

those nominal concepts that are associated with the  same attributes. However, 

if there is no limit to the number of  attributes and no connection bet ween them 

then this method is of  little use. In PIDGIN it is assumed that all nomina1s can 

be placed  somewhere on a three -dimensional graph and that each area of that  

graph may be associated with some attribute in the sense that the  attribute 

names that ar ea of the graph. This has been incorporated  into PIDGIN using 

two relations, FEEL and VALUE, and three dimensions  GOOD, STRONG and 

ACTIVE rated (arbitrarily) between -100 and +100.  So for examp1e:  

ALL HAPP Y <SUB AN ATTRIBUTE <FEEL [100 GOOD  

       70 STRON G 

       80 ACTIVE] >>.  

ALL GLOOM <SUB AN ATTRIBUTE <FEEL [ - 80 GOOD  

     - 50 STRONG  

     - 50 ACT IVE]>>.  

ALL COMFORT <SUB AN ATTRIBUTE <FEEL[50 GOOD  

      20 STRONG  

      - 20 ACTIVE] >> . 

Any attribute described as a feeling is concerned with the  subjects own 

view of themselves (a subjective internal view), any  attribute described as a 



 
122  

value is concerned with the subjects view of  some object in the external world 

(a subjective external view) and all  other attributes are concerned with 

describing the external wo rld (an  objective external view). This can be 

diagrammed as:  

 

2.3C4. Specifiers  

A specifier is a relation, or modified relation, followed by one  or more 

actors and used in an actor structure to modify the nominal.  

A specifier corresponds to a relative ter m in English, it is a  concept that 

relates or links together an actor with one or more other  actors. The twenty 

relations (ten spatial  relations and ten others)  built into PIDGIN are described 

later in this part.  

New relations are introduced by using SUB t o define their  category. A 

new relation may be substituted for by one or more of the  group -concept 

relation -describers RELATION, MEASURE, REFLEX, SYM, TRAN,  LSUB, and RSUB 

with the following effect:  



 
123  

i)  RELATION. If a concept, R, is a relation it can be use d 

to  connect two actors as A <R B> but it has none of the properties  

described below unless it is explicitly stated as having them  by defining 

the relation as capable of being substituted for by  the appropriate 

describer.  

ii)  MEASURE. If a concept, R, is a  measure then it is a relation and  

can be modified by the relmods MAX, MIN, and ME~. For example:  

ALL OLD <SUB A MEASURE>.  

ALL SALARY <SUB A MEASURE>.  

iii)  REFLEX. If a concept, R, is reflexive it is a relation that is always 

true if used to link an actor to itself A<R A>. For example, everything is 

equivalent to and located at itself.  

iv)  SYM. If a concept, R, is symmetrical then if A<R B> then this  

implies B<R A>. Only a  relation between two actors can be  

symmetrical, an example is the relation NEAR.  

v)  TRANS. If a concept, R, is transitive it is a relation such that  if 

A<R B> and B<R c> then this implies A<R c>.  

vi)  LSUB. If a concept, R, is left -substitutable then it is a  relation such 

that if A<R B> then A can be substituted for B in  any conception 

cont aining B, without altering the truth value  of the conception. Further 

A is said to be the "category" of B.  

vii)  RSUB. If a concept, R, is right -substitutable then it is a  relation 

such that if A<R B> then B can be substituted for A in  any conception 

contai ning A without altering the truth value of  that conception, and B 

is said to be the "category" of A. The  built - in SUB relation is of type 

RSUB. 



 
124  

The following describes each of the built - in relations and 

specifies  its type.  

a. SUB (TRANS, RSUB)  

This is the basic relation for defining new entity and group  concepts, 

including nominals, attributes and relations. A  definition takes the form:  

entity <SUB A group>  

or ALL grou p 1  <SUB A group 2>.  

where this declares "entity" to be of category "group", and "grou p1" to  

be of category "group 2". Because SUB is RSUB this implies that  "group" may be 

substituted for "entity" and "group 2" for "grou p1".  Further, because SUB is 

TRANS if "grou p1" were the same as "group"  then "group 2" could be substituted 

for "entity".  

b. EQUIV (SYM, TRANS, LSUB, RSUB)  

This relation is used to specify that two entity concepts or two  group 

concepts are inter -substitutable in any conception containing  them without 

altering its truth value.  

c. INVERSE (SYM)  

This relation is unusual in that it is onl y used to relate two  concepts 

that are themselves relations. It specifies that they are  inverse relations 

(brother -sister, part -contain, father -child). For  example, if:  

MARY <SISTER JOHN>.  

and BROTHER <INVERSE SISTER>.  

then JOHN <BROTHER MARY>.  



 
125  

If R1 <INVE RSE R2> then if R 2 is REFLEX then so is R 1 if R 2 

is SYM then so is R 1 if R 2 is TRANS so is R 1 if R 2 is LSUB then R 1 is RSUB and if 

R2 is RSUB then R 1 is LSUB. However if R 2 is MEASURE R1 is not.  

d. OPPOSITE (SYM)  

This relation, like INVERSE, is used to rel ate two relations.  It is defined 

as, if R1 <OPPOSITE R 2> then R 1 is the same type as R 2 and if A< R1 B> is true 

then A<R 2 B> will be false and vice -versa.  For example:  

FAR <OPPOSITE NEAR>.  

NOTLEFT <OPPOSITE LEFT>.  

e. PART (REFLEX, TRANS)  

This is used to exp ress the English notion of "part of", thus:  

A PISTON <PART AN ENGINE>.  

AN ENGINE<PART A CAR>.  

Therefore, because PART is TRANS:  

A PISTON<PART A CAR>.  

f. POSS (TRANS)  

Used to express the notion of "possession" (without any legal 

associations), thus:  

JOHN <P OSS A DOG>.  

g. FEEL, VALUE  

These are used to relate concepts to the three -dimensional  semantic 

space discussed in Part 3. FEEL is used to relate a THINKER  to a point in the 

space or to define a concept as being that point.  VALUE is used to assign an 

object  some point in the space in order to  express how some THINKER values 

that object.  



 
126  

Both relations take a single actor that may be one, or a 

band  of two or three actors, either GOOD, STRONG, or ACTIVE, with a  

quantifier between -100 and +100. If any dimensio n is not defined  (less than 

three actors) it is assumed to be zero but is free to vary,  thus:  

ALL BEAUTY <SUB A RELATIO N <VALUE [50 STRONG - 80 

ACTIVE>> . 

A VASE <BEAUTY 50 GOOD>.  

h. PRIORITY, CLASS (MEASURE)  

PRIORITY is used to assign a priority (between 0 and 100) to,  or to 

discover the priority of, a user name (see Division 2.2.2C).  This relation may 

only be used by a user with a priority over 90 or more. It is used when setting 

up the system in order to create a number of user names (or "passwords") so 

th at the system can associate every user  with a priority and thus assign an 

"importance" to anything that user  tells the sys tem.  

CLASS is used to define the type of user -  SYSTEM, GENERAL or  USER 

(see Division 2.2.2C).  

i. LOC (REFLEX, SYM, TRANS)  

This relat ion corresponds to the LOC relation of Schank. It is  used to 

express the location of one actor with respect to another.  If a spatial  relation 

(LOC, NEAR, FAR, ABOVE, BELOW, BACK,  FRONT, LEFT, RIGHT, BETWEEN, 

DIST) relates two actors that match two  objects in a current view then the view 

is used to answer questions  about the objects. The spatial  location of an object 

in a view  cannot be altered by simply stating a new location but it is altered  by 

using the TRANSFER act.  



 
127  

j. NEAR (SYM)  

NEAR means that the two  actors are either at the same location  or they 

are next to each other. Note that, unlike LOC, it is not  transitive.  

k. ABOVE, BELOW, BACK, FRONT ,LEFT, RIGHT (TRANS)  

These can be used to express the three -dimensional relation  ships 

between two objects (se e IDENTIFY Part 2.3B5).  The relations express the 

strict meanings of the words and so are not  opposites  of each other, for 

example:   

A    

 B   

 C D  

   E 

 A <LEFT B>. B <ABOVE C>. E <BELOW D>. are true.  

but C <RIGHT B>. D <ABOVE C> . are false.  

If the o pposite relations (NOTABOVE, NOTBELOW ...) were define d in 

the general knowledge, then:  

C <NOTLEFT B>. D <NOTBELOW C>. would be true.  

l. BETWEEN  

This is used to express the idea that one actor is spatially  between two 

others. The notion of numerically betw een is already built  into the way 

quantifiers are handled (using a conjunction of MORE and  LESS). The relation 

takes one argument which must be an unordered  band of two actors, the 

symmetry of these is thus automatically built  in:  



 
128  

LONDON <BETWEEN [PARIS NE WYORK]>.  

will match  

LONDON <BETWEEN [NEWYORK PARIS]>.  

m. DIST (MEASURE)  

This MEASURE relation is used to specify the distance between two 

objects. The distance can be specified in pattern units by using the concept 

UNIT, for example:  

5 UNIT <DIST [WPAWN BK ING]>.  

n. The Relation  Mod ifiers  

As well as the above twenty relations there are three relations  modifiers 

(MAX, MIN, MEAN) built - in. These can be used to modify  any relation of type 

MEASURE. One use for this facility is to be  able to express the deep stru cture of 

comparatives and superlatives,  for example:  

oldest   << OLD MAX> =ALL PERSON>  

older than x  <AGE < MORE =N YEAR <OLD x >> YEAR>  

old    <AGE <MORE =N YEAR << OLD MEAN> ALL  

      PERSON >> YEAR>  

same age as x  <AGE =N YEAR <OLD x >>  

young   <AGE <LESS =N YEAR <<OLD MEAN> ALL  

      PERSON>> YEAR>  

younger than x  <AGE <LESS =N YEAR <OLD x >>  YEAR>  

youngest   << OLD MIN> =ALL PERSON>  

2.3D. Modifiers  

A complete conception may be modified in anyone of the thirteen  

different ways discussed below.  

a. Index  

This is an inte ger that uniquely identifies the conception. The  index 

number modifier cannot be specified by the user for a PIDGIN  assertion; it is 



 
129  

automatically assigned by the system as one greater  than any 

previously used index.  

b. Author  

This is the concept associate d with the user that created the  

conception. This concept can be thought of as the user's  name, or  password, 

that he must specify before he is allowed to use the system.  Every user name is 

associated with a priority that is used to assign  a relative import ance to all the 

assertions made by the user with that  name. Any conception that is created by 

PIDGIN is assigned the author  concept SELF.  

c. Priority  

This is a number between 0 and one hundred that assigns a  relative 

importance to the conception it modifie rs. That is if one  conception contradi cts 

another the conception with the highest priority  is considered correct. The user 

cannot specify any of these first  three modifiers, index, author or priority, 

directly in a conception.  The index is assigned automat ically by the system, the 

author concept  is specified once when the user first starts to use the system 

and the  priority is already associated with the author.  

d. Truth  

 

Any conception may be modified as to its truth value, either TRUE  or 

NOT. NOT is used to indicate that the conception it modifies is  false, TRUE that 

is true.  



 
130  

e. Modal  

 

A conception may be modified as POSSIBLE, DEFN or neither. If  a 

conception is POSSIBLE it is assigned a priority of twenty and will  not be used 

to make deductions. A concept ion marked as DEFN is  assigned a priority of 10 

greater than the priority associated with the  author concept, this allows a user 

to create conceptions that can be  used to check the consistency of later (non -

DEFN) conceptions asserted  by the same user.  

f. P eriod  

 

This is used to specify any transitional aspect of the conception  it 

modifies, that is, to specify that a particular phase or change is  being 

mentioned. The possible modifiers can best be described by a  diagram :  

 

The other modifier, REPEAT, is used  to indicate that the action  is an 

event that is repeated (for example, moving the legs during  walking) and this 

repetition is an essential aspect of the complete  conception.  

g. Manner  

i) Intent  



 
131  

An action may be modified by INTEND or ACCIDENT to 

indicate w hether the subject of the action intended the specified action 

or the action took place and involved the subject.  

ii) Condition  

If the conception is modified by CAN the subject has not or will not 

necessarily perform the action but could perform it in the appropriate 

circumstances if required. If an action is modified by  CAN then any 

action that matches that conception can be performed  without any 

enabling conditions being required.  

iii) Disposition  DISPOSED is used to mark those conceptions that 

express th e idea  of the subject being inclined to carry out the action 

from time to  time, under the appropriate circumstances (for example, 

"John hunts  lions", "Tabby eats mice").  

h. Degree  

This specifier modifier allows adverbs to be incorporated in the  deep 

struct ure, for example:  

<DEGREE SLOW>  

<DEGREE IMPRESSIVE>  

However, the meaning of these adverbs is not fully incorporated  into 

the overall deep structure of the conception they modify; the  DEGREE modifier 

merely provides a "slot" into which the concepts can  be p laced. This is an area 

in which PIDGIN could be extended to more  fully incorporate the modification 

that an adverb has on its  containing sentence.  



 
132  

i. Location  

This is the same specifier that is used to qualify actors. If  an action is 

associated with a part icular location then it is  incorporated in the location 

modifier. Any action that has a time  always also involves some location but it 

does not need to be  specified in the modifiers. Conversely any action with a 

location is  associated with a time though on ce again this does not need to be  

specified even though the location is included. This modifier corresponds to 

what is usually called an "adverbial clause of place" at the  English level. The 

location specified is the location of the subject  when the act of  the action is 

performed.  

j. Time  

Time is specified as an absolute date (relative to 0 A.D.) and  time. 

Many relative times such as "now", "yesterday" and "next week"  can be made 

absolute if the time of the utterance is known. However,  there are relative 

ti mes such as "John's birthday", and "Christmas"  which may not be capable of 

being made absolute because the information  they contain is lost if they are 

replaced by anyone of the absolute  dates to which they refer. This is another 

area where PIDGIN could be  usefully extended in the way it handles adverbial 

modification. The  current way that such relative times are handled is to specify 

the time  as the actor that describes the relative time. However, this does not  fit 

into the way in which absolute times are handled.  

Absolute time is specified as a number of years, months, days,  hours, 

minutes and seconds, though they are not all required if the  time is not known 

precisely, for example:  

<TIME [22 DAY 8 MONTH 1947 YEAR]>  

<TIME 1975 YEAR>  



 
133  

NOW is taken as the cur rent date and time as known by the 

system. PAST is any time before (LESS) NOW and FUTURE any time after 

(MORE) NOW. The problem of how far in the PAST or FUTURE is resolved by 

always specifying the time NOW to the nearest second although often  the past 

or future tense is used to signify before or after some more  approximate period 

such as before or after today, or this year.  

k. Interval  

This modifier is only used if EVENT is also used. It gives the  length of 

time of the complete EVENT (from START to STOP) i n years,  months, days, 

hours, minutes and seconds or some more approximate  figure, such as:  

<INTERVAL [2 YEAR 6 MONTH]>  

That completes all the allowed modifiers for the conception.  Thoughts 

may also be modified (except for WHILE) by the same modifiers,  in which case 

the modifier applies to the complete thought.  

2.3 E. Combining Concepts  

Now that the concepts have been described it is necessary to  consider 

how they are put together to form statements. The syntax of  Section 2.1.1 

does not rule out, for exampl e, combinations such as  [SAD] TREE or  

A BEE TRANSMIT A THOUGHT A FLOWER A FLOWER 2 .  

These constructions are ruled out by the knowledge contained in the  

memory plus the rules for consistency. For example, the primitive  knowledge 

might contain the conception:  

ANY THINKER TRANSMIT ANY THOUGHT ANY MINDI ANY MIND2.  



 
134  

The system will only add a new conception to the memory if 

either it  has a priority of one hundred or the memory already contains a  

conception that matches it. This rule implies that the priority one  hundred 

conceptions define the limits of all possible future  combinations. Putting this 

another way it means that the system can  only learn new particular examples 

of what it already knows. For  example, the above conception rules out :  A BEE 

TRANSMIT A THOU GHT A FLOWER A FLOWERI.  unless BEE is defined as 

THINKER and FLOWER as MIND. This forces the  user to define the categories of 

the concepts used before they can be  combined into conceptions. Any concept 

can be defined initially as the  category pf any other because the primitive 

knowledge will usually  contain the conception:  

ANY THING BE.  

As the system is given more knowledge so the range of possible  

combinations is restricted by those of higher priority. For example,  the high 

priority general knowledge will restrict the specialist  knowledge and this will still 

further restrict the knowledge that the  user may give the system. In this way 

meaningless combinations of  words at the sentential level cannot get through 

to the deep structure  because the analyser will  not be able to create the 

corresponding  statement. Further, the analyser can use this mechanism to help 

it  choose between alternative deep structures when the sentence is  ambiguous.  

Schank considers the problem posed by sentences such as:  

John eats a ligh t bulb . 

With such sentences the analyser cannot create a deep structure 

because  the dictionary entry for "eat" insists that only "food" can: be eaten and  

" light bulb " is not a food. Light bulb  could be added to the list of  concepts of 

type food but this wo uld have undesirable consequences, for  example, all 

questions concerning food would imply light bulb  as a  possibility and the 



 
135  

unusualness of the event would be lost. The  solution is to add the 

complete conception to the dictionary as a new  possible transla tion of eat. . The 

dictionary would then contain the  equivalent of :  

Any person eat any food  

or John eats light bulbs  

When a new concept is defined it initially inherits all the  possible 

combinations of its category concept. However, a new concept  is usual ly 

distinguished because it differs from its category concept  in some quality 

dimension. For example, "mare" is a subset of "horse"  and it differs from 

"horse" in the "sex" dimension. Whereas, "horse"  may have any sex the new 

category "mare" is, by definit ion, "female".  This knowledge could be contained 

in the memory as:  

ANY [SEX] ANIMAL.  

ALL HORSE <SUB AN ANIMAL>.  

ALL MARE <SUB A [FEMALE] HORSE>.  

Here HORSE inherits from ANIMAL the possibility of being  qualified by 

SEX (MALE or FEMALE) but when MARE is def ined this  possibility is excluded by 

explicitly stating its sex as FEMALE.  To incorporate conceptual knowledge 

concerned not with a  concept s defining qualities but with its typical properties 

the  quantifier MOST can be used:  

ALL BAIL <SUB A [ROUND] OBJECT> . 

MOST [SMOOTH] BALL.  

that is, the concept BAIL is by definition round and is usually smooth.  

The fact that they are usually smooth does not prevent the system  creating the 

structure [ROUGH] BALL but it may help the analyser to  disambiguate a 

sentence in w hich the texture is not mentioned but in  which a knowledge of the 

most likely texture would distinguish between  possible translations.  

Finally, possible qualities can be specified:  



 
136  

MOST [WHITE] SNOW. SOME [YELLOW] SNOW.  

although they cannot be used during analysis.  

Entity concepts can only be combined with qualities which can be  

combined with their category concept.  

2.4 The PIDGIN Statement  

2.4.1 Assertions, Questions and Commands  

PIDGIN statements can be divided into three types, assertions,  

questions and commands. These three types are distinguished by certain  

aspects of their structure and by the preceding dialogue. Assertions  usually 

convey information, questions elicit information and commands  instruct the 

system to carry out some action. However, the p ractical  handling of these three 

types is not quite this straight - forward;  assertions may convey information 

already known by the system or  contradict what the system already knows, 

questions may require a  simple yes/no answer, require complex deductions t o 

be performed or  even convey information and commands may not be able to be 

obeyed.  

Assertions are indicated in Input PIDGIN by being terminated by  a full -

stop (see Section 2.1.2). The terminating full - stop sets a  global indicator to 

signify that the deep  structure currently being  evaluated is an assertion. Both 

assertions and questions are treated  in a similar way. They are matched 

against the memory in order to try  and find a matching statement. In the case 

of an assertion if a  matching statement is foun d this means that the system 

already knows  the information that the assertion contains, in the case of the  

question this means that an answer has been found. If an assertion  matches a 

statement already in the memory then that statement must  either be ident ical 

to the assertion, more explicit than the assertion  or a contradiction of the 



 
137  

assertion. When checking for consistency  of the complete assertion 

each actor in the assertion is separately  checked against the world model. For 

example, the assertion:  

JOHN  PASS A [WHITE] RAVEN SELF MARY.  

is contradicted by the state:  

ALL [BLACK] RAVEN BE.  

in the world model.  

At the PIDGIN - level when an assertion is evaluated it will  either 

succeed or fail. If the user is working at the English level  then the English - level 

driver program will translate this into a  suitable explanatory English reply. At 

the PIDGIN - level the action  taken is determined by the ABC PIDGIN -driver 

program, this will,  typically, store the assertion in the memory if it succeeds 

and  output it back to t he user if it fails. The following table shows the  possible 

typical responses at the PIDGIN level :  Assertion input:  

i)  No matching statement in memory  

  assertion stored in memory.  

ii)  Matching statement identical  

  output assertion.  

iii)  Matching stateme nt more explicit  

  output statement.  

iv)  Matching statement contradictory and  same or lower priority  

  assertion stored in  memory.  



 
138  

v)  Matching statement contradictory and  higher priority  

  output statement.  

Checking for consistency is a very important part  of the way  PIDGIN 

works. Rather than accept the assertions of the user, which  can lead to 

inconsistencies arising, each one is checked with the  current memory. Only if 

the assertion is consistent with the memory  is it stored. This greatly aids the 

user be cause he is kept in  contact with the contents and implications of the 

growing system.  Of course the user must be allowed to store an assertion in 

the memory  even if it is contradictory because he may wish to correct an earlier  

mistake (this can be done by using the DEFN modifier), and inconsistencies can 

arise, but this is preferable to having no checks.  

Questions are treated in a similar way to assertions. In Input  PIDGIN a 

question is signified by terminating the statement with a  question -mark (see 

Sectio n 2.1.2). A question is typically a general  assertion that retrieves a more 

explicit statement from memory, however,  in the case of the "yes -no" question 

the question is as explicit as an  assertion. The only difference in the way that 

the system handles  th e two is that if no matching statement is found the 

assertion is  stored in the memory but the question is not. So the question 

response  table is the same as the above assertion table except for the first  "no -

match" case which, for a question, does not resu lt in it being  stored in the 

memory but some m essage, such as [I DONT KNOW.], being  output instead.  

Questions may be about the working of the system itself. For  example, 

"how" and "why" questions are concerned with planning and  scheming (see 

Section 2.4.4)  respectively. The system automatically  adds assertions to the 

memory when it carries out a plan and a plan  will generate new states. 

Therefore, questions concerning actions  that have been obeyed can be 



 
139  

answered from the memory ("how" question  from THROUGH  sub -

actions and "why" questions from the states produced).  Questions concerning 

future actions can be answered from the current  scheme and plan.  

A command is a conception containing one of the action -acts with  the 

concept SELF as subject and a time modifi er of NOW. Unlike  assertions and 

questions it does not cause the memory to be searched  but it causes the ABL 

expression associated with the action -act to be  evaluated. In Input PIDGIN a 

command is terminated by either a full  stop or an exclamation -mark. Th e 

primary indicator of a command is a  conception with SELF as subject. If the 

PIDGIN interpreter is given  such a conception and the time modifier is NOW 

then it immediately  evaluates the ABL expression associated with the act. This 

expression  first checks that the command is enabled in the current memory. A  

command is enabled if either a matching conception has the modifier  CAN or 

every ENABLE thought with a matching action has states that can  be found in 

the current world model. If the command is enabled t hen  the appropriate action 

is performed (see Division 2.3B), if not the  command fails. After performing the 

appropriate action a check is made  for any PRODUCE thought with a matching 

action part. All such thoughts  that are found in the memory have their st ates 

added to the current  world model.  A conception with the form of a command 

but with a time modifier  indicating the past is treated as an assertion (about 

some past command).  

A conception with the form of a command but with a time modifier  

indicating th e future is called a suspended command and it is stored  in a special 

part of SEM, suspended evaluation memory (see Segment  2.2.3Blb), with a 

reviver based on the time it is to be obeyed.  

The actual action performed by a command depends on the facilities  of  

the complete system. For example, at one extreme the system may  be 



 
140  

connected to a number of peripherals in the real world, cameras  

(PERCEIVE and IDENTIFY acts), ' arms ' (MOVE and TRANSFER acts) and so  on, 

and at the other extreme it may be connected to sim ply a single  input/output 

terminal. In the later case all the commands must be  simulated inside the 

computer in such a way that the PIDGIN system  is presented with an 

environment similar to that which would be  presented by the real devices. This 

later syst em is that used by  Winograd's question -answering system.  

There are many types of sentence not covered by the above  division 

into assertion, question and command, for example, jokes,  greetings, 

exclamations, thanks and so on. This means that much of  the sub tlety of such 

sentenc e will be lost because the translator can  only translate it to one of the 

three types provided. However, in the  problem -solving environment in which 

PIDGIN is designed to work the  information lost should not be relevant.  Another 

diffic ulty is illustrated by the following example, if  a headmaster says  

"The boy responsible will tell me the reason why he did it."  

then this can be taken as a hope by the staff, an assertion by the  pupils 

and a command by the boy himself. It could also be tak en in  many other ways, 

such as a threat or a question. The way it is  understood by each hearer 

depends on that hearer's world view, knowledge  of the speaker and current 

world model. PIDGIN can handle some of the  subtlety implied by this large 

number of sen tences types by the use  of more rules. For example, a threat can 

be treated as an assertion  plus a rule that links such assertions to the 

possibility of the  subject of the assertion harming the object. Such a rule would 

enable  PIDGIN to deduce the possibil ity of harm but to recognise the first  

assertion as an example of a threat it would be necessary to define  the 

meaning of the concept THREAT as any assertion for which there is  a matching 

rule that implies the subject of the assertion may harm the  object.  



 
141  

Another way that the PIDGIN system can be used is to run 

it in a  mode that causes it to try to extend and improve its knowledge by  asking 

the user questions. This can be done by taking any conception  that is not fully 

modified and qualified. For example:  

John takes a book.  

 JOHN PASS A BOOK AN OWNER JOHN.  

is the source of the following questions, and many more:  

Which book?  

Who owned the book?  

When did John take it?  

How did John take it?  

Why did John take it?  

Questions can also be generated by forming hypoth eses. A hypothesis  

is generated by taking a statement, making its concepts vaguer and  checking 

the result for consistency with the current memory. For  example :  

John takes  objects.  

People take books.  

People take objects.  

The problem with allowing PIDGIN to generate such questions and 

hypotheses  is to find some way of restricting them to the most likely 

possibilities . This requirement goes beyond the current scope of PIDGIN.  

2.4.2 Substitution Rules  

Matching is the most important basic process in the PIDGIN s ystem  as 

it determines conception equivalence , which determines what questions  can be 

answered, what commands obeyed and what problems solved. This  section 

describes all the rules used in the matching process. These  rules are called 

substitution rules beca use they describe all the conditions under which one 

statement may be substituted for another.  



 
142  

Unlike most matchers, such as those of SNOBOL or 

PLANNER, PIDGIN  does not match "blindly" but uses the semantic information 

available  to limit the possible match es. Further, as all matches take place 

between  two statements the matcher works with items that have limited syntax  

and fixed, known semantic relations. This enables an efficient implementation 

to be made. For example, the first item in a conception is  alw ays one of the 12 

acts (nine acts plus BE plus the two general acts).  The system can therefore 

not only divide the memory according to this  first item but each act can be 

associated with a different matching  algorithm that takes into account the 

syntactic and semantic restrictions  that the act imposes on the whole 

conception. Further, the semantics  of actors and attributes suggests that they 

may be efficiently related  by means of tree structures. Thus, although the 

memory is regarded  throughout as a linear sequence that is scanned 

sequentially it can  in fact be implemented as an interconnected network, similar 

to memory  structures such as that of Quillian. The form of this network is not  

described, however, as it is regarded as an  implementation  detail that  should 

play no part in the design of the system. The rigid specification  of the deep 

structure ensures that an efficient implementation is  possible but the details of 

this are left to the implementor (one possibility is discussed in Appendix  I). The 

justif ication that is so m e times given for describing networks is because of their 

obvious analogy  to the central nervous system. However, so little is known of 

the  structure of nerve nets involved with such complex activities as language  

and problem solving tha t little appears to be gained from such conjectures. 

PIDGIN can be regarded and described in terms of networks  but for the 

purpose of presenting it as a programming language it is  simpler to think of it 

as a sequence of statements.  

The matching ability of PIDGIN centres on matching two actors  

together. This ability is available directly using the act IDENTIFY  (see Part 



 
143  

2.3B5) which can be used to match actors or groups of actors  with 

a group of actors called the view. The matcher is also used  implicitly thr oughout 

the system, for example, to answer questions and  to check for consistency. The 

implicit matching process always takes  place between two statements and 

consists of three parts, the actor  matcher, the modifier matcher, and the 

conception matcher whic h uses  the other two.  

2.4.2A The Matcher  

The matcher takes a single statement and tries to find a matching  

statement in the memory using the substitution rules and the relations  between 

the concepts. The single statement is called the picture and  is typica lly a 

question and this is matched with each statement in  memory in turn until either 

a successful match is found or the memory  is exhausted and the match fails. As 

each statement in memory is  examined it becomes known as the pattern or 

candidate, and is t ypically  an assertion.  

If a successful match is made then a "fail -point" is set up in  the 

matcher so that a later failure can return to the same point and  continue 

searching. If the memory is exhausted and the picture is a  conception then the 

matcher exami nes all the IF -rules for one with a  matching header (the first 

conception of the rule). If there are no  IF-rules that match or all matching IF -

rules fail then the complete  match fails. If a matching IF -rule is found then a 

fail -point is set  up and the rest  of the IF -  rule is evaluated to determine if the 

match  is successful.  

This fail -point mechanism is also incorporated in PLANNER for  a similar 

purpose. However, it is hoped that the complexity of a single  conception 

compared with for example Winograd's PLA NNER data -base  patterns will enable 

a more efficient system to be 'set up because of  the reduction in failure 



 
144  

backtracking. This follows from the fact that  simpler patterns will 

match more often and so if one complex pattern  is replaced by a number of 

simp ler patterns each of which must be matched  against the complete memory 

and each of which may involve a large number  of backtracks then the complete 

process will take longer. Fo r example, in  Winograd's system to find "a large red 

cube" required the Micro -Planner  comm ands:  

(THGOAL (#IS $?Xl #BLOCK))  

(#EQDIM $?Xl)  

(THGOAL (#COLOR $?Xl #RED))  

(THGOAL (#SIZE $?Xl #LARGE ))  

that is, first find a block, then check it is a cube, if not backtrack  to find 

another blo ck, then check it is red, if not backtrack to find  another bl ock, then 

check it is large, if not check for another colour  and another block. This 

continual backtracking becomes even worse when  the equivalent of a complete 

conception is considered.  

It is interesting to note that R. Schwarcz (1970) and R.F. S immons  

described a similar problem with their Protosynthex III system and  suggest a 

similar solution. With a large data -base these backtracking  memory searches 

become increasingly slow because of the combinatorial  explosion and Schwarcz 

suggests two possib le ways of alleviating this:  

(i) "partitioning the data base into discourse units".  

In effect this means not looking at parts of the data -base because it  is 

known that they do not contain the answer. This amounts to the  system having 

some idea of where to look before it starts the search  and the problem is how 

to order or to divide the data -base so that the  questions that occur can make 

use of the ordering and division. PIDGIN  goes a small step along this path 

because its syntax allows the system  to partiti on on the subject nominal and 

the act. For example, it can  divide the data -base into those conceptions 



 
145  

concerned with PERSON PASS,  PERSON MOVE, PERSON TRANSFER, 

and so on. This is a graph -partitioned  data -base which is strongly tree -

partitioned because of the structure  of the concept relations. That is, PIDGIN 

could be implemented with  a meaning structured data -base so, for example, to 

find all conceptions  concerned with "CHILD MOVE" it need only look first at the 

THING -ANIMAL  PERSON-CHILD concept structure  and then in detail through 

just the  CHILD -MOVE conceptions. The advantage of this system is that the 

nominal  concept structuring automatically increases in complexity with data -

base  size. The increased length of time required to search a larger data  base 

should be offset to some extent by the finer partitioning resulting  from the 

typical corresponding increase in the dividing of concepts.  The extent to which 

one offsets the other has not been investigated  by practical comparisons.  

(ii) "use a basic unit la rger than the relational triple".  

Protosynthex, and to some extent Wino grad's use of PLANNER, is based  

on a data -base unit consisting of three parts (relation plus two  arguments). 

Schwarcz suggests that by increasing the size of the unit  and thus reducing the 

number of sub -goals and the number of answers  to each sub -goal the system 

would be quicker even though each individual  comparison takes longer.  He also 

states:  

"Thus the substitution of the Fillmore case structure for the  structure of 

event triples wou ld yield substantial benefits  for natural language deductive 

question -answering systems. " 

PIDGIN is based on Schank's case structure which is an improvement of  

Fillmore's (see Schank 1969b) because it is concerned with the conceptual  deep 

structure not the  surface syntax and also because it is designed  with the 

computer in mind.  



 
146  

Although the PIDGIN matcher may be improved by the 

above techniques  it is easier to understand if it is imagined that i t  searches the 

complete  data -base for a match each time. If th e statement is a thought only  

the corresponding thoughts need be examined (those with the same connector)  

and each one is matched by first comparing each corresponding conception  and 

then comparing modifiers. If the statement is a conception only  correspon ding 

conceptions (those with the same act) need be examined  and each one is 

matched by first comparing corresponding actors  (subject, object, source and 

destination) and then comparing modifiers.  This may involve recursively 

matching conceptions as the obj ect of a  conception may itself be a conception. 

When two actors are compared  it is the reference of the picture actor concepts 

that are compared  with the corresponding concepts of the pattern actor. The 

reason for  this is described later.  

If the matcher fi nds a match then the binder (see Division 2.4;2D)  is 

used to make the pattern concepts the reference of the corresponding  concepts 

of the picture statement.  

2.4.2B Actor Matching  

The essential point about matching two actors is that not only  do 

identical a ctors match but if the picture is substitutable for the  candidate then 

they also match. This division describes when one actor  is substitutable for 

another.  

2.4.2B 1. Combinations of Actors  

An actor may be a single actor or a band or class of actors.  When 

m atching two actors there are nine possibilities all of which,  except the last, 

recursively call the actor matcher:  



 
147  

i)  Picture actor is a band, candidate a band (conjunction  

conjunction) .  Each member of the picture band is matched against the 

candidate  ban d and must match at least one member. A complex case 

is illustrated by the following example:  John, Bill and Jill went bowling.  

Did three people including two men go bowling?  The above procedure 

would succeed with this example. Note that  the question is am biguous, 

it may mean exactly or at least  the numbers specified. The two 

interpretations result in  different deep structures, either EQUAL or 

MORE being used as  the quantifier.  

ii)  Picture is a band, candidate a class (conjunction -disjunction).  The 

complete  picture band must match every member of the class.  

iii)  Picture is a band, candidate a single actor (conjunction  actor).  

Every member of the band must match the single actor.  

iv)  Picture is a class, candidate a band (disju nction -conjunction).  At 

least one  member of the class must match the complete band.  

v)  Picture is a class, candidate a class (disjunction -disjunction).  

Every member of the pictur e class must match at least one member  of 

the candidate class.  

vi)  Picture is a class, candidate a single actor  (disjunction -actor).  At 

least one member of the class must match the actor.  

vii)  Picture is an actor, candidate a band (actor -conjunction).  The 

actor must match at least one member of the band.  

viii)  Picture is an actor, candidate a class (actor -disjuncti on).  The actor 

must match all the members of the class.  



 
148  

ix )  Picture is an actor, candidate an actor (actor -actor).  

The quantifier, attributes, specifiers and nominals must  match as 

described below.  Nested combinations of the above cases can be 

matched usin g the  above rules. Thus the following two questions would 

succeed:  

(Two boys and three girls)or(two girls and three boys)  went 

bowling.  

Did five people go bowling?  

Did at least two boys and at least two girls go bowling?  

A single actor has the form (Input PIDGIN):  

quantifier [attributes] nominal specifiers  

therefore to match two actors involves matching four parts. The  first 

part matched is the two nominals, they match if and only if:  

i)  they are the same concept or either is in the EQUIV relation  to the 

ot her.  

ii )  the picture nominal is substitutable for the candidate nominal  (see 

Part 2.3C4 for an explanation of concept substitutability).  

iii )  the candidate nominal has the quantifier ALL and is substitutable  

for the picture nominal.  

If this comparison is s uccessful the other three parts are matched  in 

the order quantifier, attributes then specifiers.  

Any world model state containing one of the nominals quantified  by ALL 

may be used in order to check the general attributes  and specifiers  of that 

nominal.  



 
149  

2.4 .2B2 Quantifier Matching  

Each quantifier can be an expression, number, number concept,  

comparison or approximation. If it is expression it is evaluated,  if possible, and 

the following table specifies the way in which the  two quantifiers are then 

compared.   

   Candidate   

  C <MORE C>  <LESS C>  

 P P=C fail  fail  

Picture  <MORE P>  P<C P¢C fail  

 <LESS P>  P>C fail  P²C 

If a number is specified as approximate (using ABOUT) then the 

number is allowed to vary by 25%. The following examples illustrate these 

rules:  

Picture  Candidate  Result  

<MORE 2>  <EQUAL 3>  succeed  

<MORE 30>  <MORE 40>  succeed  

<ABOUT 10>  <EQUAL 12>  succeed  

<ABOUT 10>  <EQUAL 14>  fail  

<EQUAL 5>  <MORE 4>  fail  

<MORE 5>  <MORE 4>  fail  

If one of the quantifiers contains an expression it is evaluated  to a 

number before the comparison, if it cannot be evaluated because  it contains a 

number concept that does not have a number as its  reference then the match 

fails. However, if two expressions are being  compared and one or both cannot 

be evaluated then the  expressions  themselves are matched. To make the 

comparison the order of the  arguments of both ADD and MULT is ignored and it 



 
150  

is sufficient for the  two expressions to use the same number 

concepts in the same places  but not necessarily the same number conce pts in 

both expressions.  Thus:  

<MULT X <ADD 2 X>>  

 succeeds with <M ULT <ADD Y 2> Y>  

 but fails wi t h <MU LT X <ADD 2 Y >>  

Also a number concept in the picture will match any self -contained  

expression (an expression containing no number concept used outside  th at 

expression), thus in the limiting case a picture quantifier consisting of a single 

number concept will match any expression, for  example:  

the picture   <MU LT A B>  

will match   <MULT <MULT X X> <MULT Y Y >>  

2.4.2 B3. Attribute Matching  

An attribute is a gro up concept being used to qualify a nominal.  They 

are matched in the same way as nominals except that attributes  always occur 

in an unordered band.  

For example, COLOUR may be defined as RED, BLUE and GREEN, and  

RED as SCARLET, ROSE and PINK, then if the pic ture is PINK the candidate  

must be PINK, if the picture is RED the candidate must be PINK, ROSE,  

SCARLET or RED.  

The order of the attributes is not significant. If a picture  attribute does 

not match the candidate it is checked with the world  model states t hat have a 

matching nominal and the quantifier ALL. If  is holds in the world model then the 

comparison continues otherwise  it fails.  



 
151  

2.4.2 B4. Specifier Matching  

A specifier is a relation between two (or more) actors, it takes  the 

form:  

(i) <relation actor >  

or (ii) << relation relmod> actor>  

The relations are matched first, in the same way as two nominal  

concepts.  

If either relation has the second form above (where relmod,. is  MAX, 

MIN or MEAN) then both relations must have the same form and the  same 

relmod.  If one relation is the INVERSE (see Segment 2.3C4c) of  the other then:  

if the picture actor has the form: -  A <R 1 B>  

and the candidate the form: -  C <R 2 D>  

then A must match D and B must match C for the two actors to match.  

If a picture specifier does not m atch it is compared with the  world model states 

that have a matching nominal and the quantifier  ALL, if a match is found the 

comparison continues otherwise it fails.  

2.4.2 C. Modifier Matching  

The modifier is checked last. If two modifiers do not match the  

conception  may still be a satisfactory answer to the question. There  fore a note 

is kept of the conceptions that match except for their  modifiers and if no other 

match is found then they are used. However,  if the only difference is the truth 

modifier of t he two conceptions  then they are regarded as matching and the 



 
152  

match succeeds with the  question denied (or the assertion 

contradicted).  The following rules are used:  

i)  Index: not checked  

ii)  Author: not checked  

iii)  Priority: not checked  

iv)  Truth: see abo ve 

v)  Period: the two periods are matched like two attributes, if  the 

picture is EVENT it will match any candidate period, other  wise they 

must be the same.  

vi)  Manner: must be the same, exc ept that if the picture is CAN  the 

candidate will match if no mann er is specified.  

vii)  Degree: the degrees are matched by the specifier matcher.  

viii)  Location: the location specifier of a complete conception takes  the 

same form as the location specifier of an actor and is  matched in the 

same way.  

ix)  Time: this is matc hed by the specifier matcher. The time may  

consist of one or more actors each of which specifies the number  of 

those time intervals, the accuracy of the result is taken  as being 

specified by the smallest time interval used. The  candidate must be as 

accurat e or more accurate then the picture,  for examp1e:  

Picture <TIME [2 MONTH 1976 YEAR]>  

matches <TIME [3 DAY 2 MONTH 1976 YEAR]>  

but not <TIME 1976 YEAR>  



 
153  

x)  Interval: this is only specified if the period EVENT is  

specified. The interval is specified as one or  more of a number  of time 

intervals. The two are matched in the same way as the  time modifier 

with the same rules as regards the accuracy of  the interval.  

2.4. 2D Binding Statements  

If a picture matches a candidate then the references of all the  concepts 

of  the picture are altered to be the corresponding concept  of the candidate. This 

process is called binding. For example, if  the assertion candidate:  

JOHN PASS BOOK SELF BILL.  

is matched by the question picture:  

JOHN PASS AN OBJECT SELF BILL?  

then the concep t OBJECT in the picture will have its reference  altered to 

BOOK by b inding.  

Subscripted concepts may be used so that the same concept may  take 

different references, for example, matching the question:  

A PERSON 1  PASS AN OBJECT A PERSON 1  A PERSON 2? 

will bind  PERSON1  to JOHN, OBJECT to BOOK and PERSON 2  to  BILL. If 

binding two statements would cause a concept (or one  subscripted concept) to 

take more than one reference then the  binding fails.  Matching and binding 

occur in four circumstances:  

i)  When answering q uestions, this may involve evaluating  associated 

IF-rules.  

ii)  When problem solving certain connections between conceptions  

(thoughts) are checked to determine what can be done.  



 
154  

iii)  Consistency checking, this involves question -

answering.  

iv)  Command execu tion, this involves checking for certain  

connections (for example, PRODUCE and ENABLE thoughts.)  

These four circumstances can be reduced to two types of matching  and 

binding, question -answering and connection checking. These two  differ slightly 

in the way they are handled and they are described  separately below.  

a. Question -Answering  

At the top - level conceptions are obtained directly from the user.  If a 

question is asked a matching assertion is looked for in the memory  and if found 

the information bound bac k into the question is used as  the basis of the reply. 

This means that at the top - level the concepts  have references that are 

determined by the questions that have been  asked. For example:  

Who took the book?  

A PERSON PASS BOOK A PERSON 2  SELF?  

Might leave P ERSON bound to JOHN (that is, JOHN as the reference of  

the concept PERSON). If the next question is:  

Who took the money?  

then if the same concepts are used the question generated will be  

asking if JOHN took the money. This problem is overcome by clearing  all the 

concepts in each question before it is matched. A concept is  cleared by making 

its reference equal to itself.  An assertion in the memory may be associated with 

a rule (by  the IF connector). If such an assertion matches a question then the  

rule must be evaluated before the question can be answered. Evaluating  the 

rule may result in secondary questions  being matched and these in turn  may 

invoke further rules. The following sequence of steps describes  the process of 



 
155  

matching, binding and invoking a rule  in a way which  prevents two 

rules with a common concept from interfering with each  other:  

i)  If the first conception of the rule (the header) matches the  

question then  

ii)  all the actors in the header are bound to their corresponding  

actors on the questio n, this is called forward binding and it  is the only 

place that information goes from a high level (the  user is the top level) 

to a lower level then  

iii)  all the concepts in the rule except for those altered by step  (ii) 

have their reference set equal to t hemselves (they are  cleared), then  

iv)  the rule is matched, this may involve further question -answering  

and rule processing. When comparing a rule question with the  memory 

only conceptions with a priority greater then 20 are  considered (see 

Segment 2.3De)  

v)  the references of all the concepts in the header are made the  

references of the corresponding concepts in the question (back  ward 

binding, information is being carried back to the user)  then  

vi)  all concept references altered by the above steps, except for  those 

that occur in the question itself, are reset to their  value before step (i).  

The above steps are analogous to function application in many  

programming languages, step (ii) corresponds to passing the input  parameters 

into the function body, step ( iii) to setting the local  variables to some initial 

value, step (iv) to executing the function,  step (v) to returning the results and 

step (vi) to resetting local  variables to their previous values. The above steps 

are also  similar to the pattern -directed procedure invocation in PLANNER, but  



 
156  

they can better be thought of as forming a meaning -directed rule 

invocation.  The following example illustrates the above steps:  

1. A PERSON <EARN <SUB  <MULT H R> T>POUND>  

2. IF THE PERSON < WORK = H HOUR>  

3 . AND THE PE RSON <RATE = R POUND>  

4 . AND THE PERSON <TAX = T POUND>  

5. JOHN <EARN =X POUND>?  

i) Conception 1 matches question 5.  

ii) PERSON in 1 is bound to JOHN in 5, i.e. the input parameter is  

passed.  

iii) H,  R and T are cleared, i.e. locals initialised.  

iv) The r ule (lines 2,  3 and 4) is matched to find HOURS H, RATE R  and 

TAX T for JOHN, answering these questions may involve using  other 

rules, i.e. function execution.  

v) Conception 1 is bound into 5, the expression is evaluated and  the 

result made the reference o f X, the result is returned.  

vi) PERSON, H, Rand T are reset, so their reference is the same  as 

before step (i), i.e. locals are reset.  

b. Connection Checking  

This is similar to question -answering, consider:  

1. A PERSON <POSS AN OBJECT>  

2. ENABLE THE PERSO N PASS THE OBJECT SELF A PERSON 2 .  

3. A PERSON PASS AN OBJECT SELF A PERSON  

4. PRODUC E THE PERSON 2  <POSS THE OBJECT>  

These thoughts give information used when a command is obeyed and  

when problem solving, for example:  

5. JOHN PASS A BOOK SELF BILL.  



 
157  

will mat ch conception 2 and then the following occur :  

i) conception 2 is bound to 5.  

ii) the conception 1 is matched, in this case  

JOHN <POSS THE BOOK>.  

is checked.  

iii) any concept whose reference is altered by steps (i) of (ii)  is reset to 

its value before step (i).  

A similar series of steps occurs when matching 5 with the  PRODUCE 

connection except that the conception matched at step (ii)  is treated as a 

question for ENABLE and as an assertion for PRODUCE.  

2.4.3 Deduction  

The last section has described how IF - rul es are invoked if a  question 

cannot be answered directly from the memory. An IF - rule is  an explicit 

statement of a deduction that can be made. It is based  on the rule of modus 

ponens, namely given as premises  a conditional  proposition and the antecedent 

of  that conditional, the consequence  of the conditional may be drawn as 

conclusion. For example, given  P ->Q and P,Q may be deduced, or in its 

PIDGIN form given Q IF P and  P,Q may be deduced. This is also the method of 

deduction used by  PLANNER in the form o f goal -directed consequent theorems.  

As well as this explicit deduction there is also a form of  implicit 

deduction that occurs during matching in PIDGIN. All of this  implicit deduction 

must be done explicitly in a system such as that  of Winograd because th e 

programming language used as the deep structure  was not restricted to handle 

only those patterns required by the deep  structure of language. It is this 



 
158  

implicit deduction that justifies  the phrase "meaning -directed" as 

applied to PIDGIN's evaluation as  opposed to the "pattern -directed" evaluation 

of PLANNER.  The following simple example illustrates implicit deduction.  

Consider the deduction:  

Fido is a dog.  

All dogs are animals.  

so 

Fido is an animal.  

In Mic ro-Planner this becomes:  

( THASSERT (DOG FIDO))  

(DE FPROP THEOREMI  

 (THCONSE (X) (ANIMAL $?X).  

  (THGOAL (DOG $?X)) )  

THEOREM)  

(THG OAL (ANIMAL FIDO) (THTBF THTRUE))  

It can be seen that explicit deduction is required. In PIDGIN  it 

becomes:  

FID O<SUB A DOG>.  

ALL DOG<SUB AN ANIMAL>.  

FIDO<SUB AN ANIMAL>?  

Because the SUB relation is part of the basic system it is possible  to 

define it in such a way that an assertion using .SUB causes the  information to 

be stored in a way which may be efficiently utilised  later (probably in some 

form of tree structure). Thus when th e question is asked it can be answered 

directly from this structure with  out needing to search the memory. Further, 

this information can be  used whenever a question involving the concept 

ANIMAL is matched  against an assertion containing the concept FIDO, f or 

example:  

JOHN PASS FIDO SELF BILL.  

JOHN PASS AN ANIMAL SELF BILL?  



 
159  

This last question can be matched directly with the 

assertion after  making the implicit deduction that Fido is an animal. Implicit  

deduction cuts down the amount of backtracking required to solve a  problem 

especially when the conceptions involved are complex. However,  there comes a 

point when it becomes more convenient to use explicit  deduction. The following 

examples illustrate this.  a. Examp le 1 The relation AUNT can be defined from 

the relations PARENT and  SISTER by means of the rule:  A WOMAN <AUNT A 

PERSON>  

IF THE WOMAN <SISTER A PERSON>  

. AND THE PERSON 2  <PARENT THE PE RSON>.  

Then whenever the relation AUNT is used the above rule can be applied  

to test if the relation is true by trying to find a third person who  is the sister of 

one and the parent of the other person. For example,  if:  

JILL <SISTER BILL>.  

BILL <PARENT JOHN>.  

Then if the question:  

JILL <AUNT JOHN>?  

is matched against the memory a search will first be made for a  

conception that matches directly, if none is found then the  IF-rules are 

searched. In the above case the IF - rule does match  (assuming BILL and JOHN 

are PEOPLE and JILL is a WOMAN) and the question  is forward bound into the 

rule. Note that the rule specifies that  only  WOMAN can be related to PERSON by 

the relation AUNT. This stops  the system from trying the rule if the first person 

is not a WOMAN  and thus it implicitly asserts that all AUNTS are WOMAN. After  

matching and binding the header the body of the rule is match ed.  The body of 

the above rule is a conjunction of two conceptions.  Matching involves both of 

these conceptions, both must successfully  match the memory for the complete 

rule to succeed. However, it is  not clear in which order the conceptions should 



 
160  

be mat ched. The most  straightforward way is to match them in the 

order in which they occur  but it will be shown below that in some cases this can 

be extremely  inefficient. In this case the rule to be matched consists of the  two 

questions:  

JILL <SISTER A PERSON 2> ? 

A PERSON 2  <PARENT JOHN>?  

Both questions contain two actors whose nominals are a group and an  

entity concept. The most efficient to match first is the question  containing the 

group concept which has the least number of concepts  that can be substituted 

for  it. In this case the two group concepts  are the same so the next step in 

trying to choose the most efficient  order would be to estimate the average 

number of PERSON in the SISTER  relation as opposed to the average number of 

PERSON in the PARENT  relation. At this point the calculation of the most 

efficient order  is becoming as lengthy as the search itself and so they are 

matched  in the order they occur. With large data -bases and long search times  it 

would probably become more efficient to spend longer on th e estimate  of the 

best order of evaluation and to do this some way of maintaining the necessary 

statistics would need to be developed.  The first question matches the memor y 

and PERSON 2 is bound to  BILL. The second question will then succeed. Finally, 

WOMAN, PERSON and PERSON 2 (all the concepts not in the original question 

that have  had their reference altered) are reset and the original question  

succeeds.  If the question had been:  

Who is John's aunt?  

A WOMAN <AUNT JOHN> ?  

then this question would also have matched the IF -rule but the two  

conceptions of the rule would then become:  

A WOMAN <SISTER A PERSON 2>?  

A PERSON 2  <PARENT JOHN> ? 



 
161  

and in this cas e it is clear that i t  is better to match the 

second  question first. In general the following rules give a good in dication  of 

the best order:  i) match the conception with the least number of group 

concepts first.  If this does not give an unique conception then  ii) match the 

conception with the most number of more specific group  concepts first. . If a 

concept, A is mor e specific than a concept,  B, then B can be substituted for A. 

For example, if the group  concepts involved in the conceptions are:  

1. ANIMAL ANIMAL  

2. PERSON ANIMAL  

3. PERSON DOG  

then the order of matching becomes 3,  2,  1 because PERSON and DOG  

are more sp ecific then ANIMAL. That is, (1) comes last because  its group 

concepts are the least specific (2) comes next because  one of its concepts is 

more specific and (3) comes first because  two of its concepts are more specific. 

If this does not give  an unique con ception then  iii) match in the order they 

occur in the rule.  For the case of the above two questions the second. should 

be matched  first (rule (i». This then gives the question:  

A WOMAN <SISTER BILL> ?  

and this binds WOMAN to JILL. Finally, PERSON and PERS ONZ (all the  

concepts not in the original question that have had their reference  altered) are 

reset and the original question succeeds with WOMAN  backward bound to JILL. 

The answer can then be framed from the changes  that have occu rred  to the 

group concept s in the question. If there  have been no changes (or no group 

concepts) then the answer is "Yes"  if the question succeeds and "No" if it fails. 

Other wise the answer  is constructed from the changes, in this case a suitable 

answer would  be:  

Jill.  



 
162  

b. Example  2 

The following rule calculates the number of sub -parts of a part.  This is 

followed by a detailed description of its use for an example  which involves the 

rule being used recursively.  

<MULT M N> OBJECT <PART OBJECT 3>  

IF =M OBJECT <PART AN OBJECT 2>  

AND =N OBJECT 2  <PART AN OBJECT 3>  

5 FINGER <PART HAND>.  

1  HAND <PART ARM >.  

2  ARM <PART MAN >.  

=X FINGER <PART MAN >  

1 The memory is searched for a match to the question but none is  

found so the IF -rules are searched and a match is found binding OBJECT  to 

FINGER a nd OBJECT 3  to MAN. The rule is then matched and the first  conception 

matches bin ding M to 5 and OBJECT 2  to HAND. The question:  

=N HAND <PART A MAN>?  

is then asked causing the IF -rule to be used recursively (because the  

question cannot be matched with any c onception in the memory). The  first 

conception of the rule then becomes:  

=M HAND <PART AN OBJECT 2> ?  

and th1s matches and binds M to 1 and OBJECT2 to ARM. The second  

conception then becomes:  

=N ARM < PART MAN> ? 

and this matches and binds N to 2. The rule is  then complete and the  

expression can then be computed giving 2 which is made the reference  of N. All 

the other changed concepts are reset to the reference they  had on entry to the 

rule.  The first level use of the rule is then complete and the  expression c an be 

computed (M has reference 5 and N 2) giving 10 which  is made the reference of 

X and all the other concept reference changes  are reset.  The original question 



 
163  

thus succeeds leaving the number concept  with the reference 10. 

This can be used as the basis  of the reply:  

10  

2.4.4 Problem Solving  

The problem solving ability of PIDGIN is derived directly from  the deep 

structure. Problems are typically solved with a computer by  writing a program 

using the usual  programming language features s uch  as declarations , 

assignments, goto's, labels, looping and so on. If  these were incorporated into 

PIDGIN much of its potential for answering  questions about its own structure 

and the ability to teach it how to  solve problems conversationally would be lost 

because such pro gramming  features do not combine easily with the linguistic 

deep structure. The  problem is what features can be added to PIDGIN to take 

the place of  these programming language features that will fit easily into the 

over  all linguistic framework and yet sti ll provide a "programming" type  of 

problem -solving ability.  

People use English to teach other people how to solve problems.  This is 

done by explaining what situations to avoid, what types of  situation to aim for, 

rules for recognising both situations and  procedures for avoiding and achieving 

them. All this information can  vary from the explicit rule ("Avoid...!") and 

procedure ("Always do  this and this and this") to the vague rule ("Look out for 

something  like...") and procedure ("It sometimes might help to ..."). This  

section describes how this type of information can be incorporated in  and used 

by PIDGIN. The way this is done can in some ways be regarded  as the 

1ing ui~tic equivalent of the techniq ues used by General Problem  Solver 

(Newell, 1961a and 1961b).  



 
164  

The basic idea is to use acti ons to reduce the difference 

between  the current state and the desired state. But, unlike GPS, PIDGIN  works 

within a particular linguistic framework that guides and improves  the whole 

strategy. This is possible because of the large amount of  knowledge contained 

in a conception in the form of its potential  associations through memory 

compared to the sparse logical framework  used by GPS.  

Two problem solving techniques are used by PIDGIN, called  scheming 

and planning. Scheming is the name given to the operations  necessary to form 

a scheme and planning to those necessary to form a  plan. A scheme is a 

sequence of states leading to the desired state  and a plan is a sequence of 

actions leading to a state within a scheme  (possibly the d esired state). In 

anyone problem description there is  one current desired state (for example 

checkmate in chess) and a scheme  is a description of some of the intermediate 

states that it is thought  necessary to reach before the desired state can be 

reached.  When  problem solving the first thing done i3 to form a scheme. This 

will  consist of the desired state preceded by zero or more states that it  appears 

necessary to achieve, in the order given, before the desired  state can be 

reached. Once a scheme has been  found a plan can be made,  this will consist of 

a sequence of actions that should achieve the  first state in the current scheme. 

Finally, the first action will be  performed;  this will change the world model. If 

the environment reacts  to the action (for exa mple the opponent makes a move 

in chess) then both  the current plan and scheme may need to be reformulated 

before carrying  out the next action.  

2.4.4A Notation  

Before describing the problem solving technique in more detail  it is 

necessary to define a numbe r of terms:  



 
165  

A state is a conception consisting of one subject actor and  

the act BE.  

A current state is one that can be found in the memory.  

The world model is all the current states.  

A feeling is defined using a specifier with the FEEL relation.  

A positive  (negative) feeling is a GOOD, STRONG and ACTIVE  (BAD, 

WEAK and PASSIVE) one. An actor has a positive (negative)  feeling if it is 

qualified by the FEEL relation and the total of the  co-ordinates specified is 

positive (any co -ordinate not specified is  assum ed to be zero) (negative). One 

feeling is more positive (negative)  than another if the total is greater (less) 

than the other.  

The feeling (of PIDGIN) is the (one) feeling currently associated  with 

SELF (the PIDGIN system) in the world model.  

A positive (n egative) state is one that is associated by a thought  with a 

positive (negative) feeling of the PIDGIN system.  

The desired state is the most positive state.  

An enabled action is an action that is enabled by the current  world 

model (via the ENABLE connector  or CAN modifier).  

An action is positive (negative) if it produces a positive  (negative) 

state.  

A state is short - term positive (negative) if it enables a  positive 

(negative) action.  



 
166  

A state is a long - term positive (negative) if it suggests a  

positive (nega tive) state.  

The final state is the desired state and it terminates the  problem. 

Similarly the final action is the action that leads to the  final state and the short 

and long term final state and action are  similarly defined.  

A final wor ld is a world model  that contains the final state.  

A positive (negative) world is a world model containing the  positive 

(negative) feeling.  

A step consists of obeying one enabled action. This results  in a new 

world model.  

A possible world is a world that can be reached from the world  model 

by one or more steps.  

The uncontrollable future consists of all the possible worlds  that can be 

reached solely by steps in which the subject is not SELF  (it being assumed that 

if the subject is SELF then the step is  controllable).  

A positiv e (negative) scheme is a sequence of positive (negative)  

states.  

A practical scheme is one in which the first state is suggested  by a 

state in the current world model and that state suggests the next  state in the 

scheme and the last state of the scheme is a final state.  

A positive (negative) plan is a sequence of positive (negative)  actions.  

A practical plan is one in which each action produces a world  model that 

enables the next action in the plan and the first action  in the plan is enabled by 



 
167  

the current world model and the last action  produces a state in a 

practical scheme.  

2.4.4B. Scheming and Planning  

Scheming involves producing a practical positive scheme and  planning 

involves producing a practical positive plan. A scheme is  generated by:  

SELF COGITATE  A SCHEME.  

 

and a plan by:  

SELF COGITATE A PLAN.  

 

Only one scheme and one plan may be actively in use at anyone  time. 

They are called the current scheme and plan and are the reference  of the 

concepts SCHEME and PLAN. If there is no current scheme (SCHEME  is clear) 

then the second command above must generate a plan that leads  to a final 

world.  

The way in which a scheme and a plan are generated will be  described 

by means of examples.  



 
168  

a. Example I -  Monkey Puzzle  

 

 

The problem is how can the monkey reach and eat the banana. 

Monkeys can solve this problem, can PIDGIN? The following statements 

describe the problem:  

1. Bananas are food  

 

2. PI, P2 and P3 are places.  

3. PI is below the banana, P2 at the box and  you are at P3.  

4. Eating makes you feel good.  

5. Stand ing on the box under the banana enables  you to eat it.  

6. Standing by the box enables you to get on it.  

7. You can move the box from place to place.  

B. What do you do?  

This description of the problem must first be translated into  PIDGIN as 

follows:  

1. ALL BANANA <SUB A FOOD>..  

 

2. P 1  <SUB A PLACE>. P 2  <SUB A PLACE>.  P3  <SUB A PLACE>,  

3. P 1  <BELOW BANANA>. BOX <LOC P 2>.  SELF <LOC P 3>.  

4a. SELF TRANSFER A FOOD A PLACE MOUTH..  

b. CAUSE SELF BECOME SELF <FEEL 100 GOOD>.  

5 a. SELF <ABOVE BOX <BELOW BANANA >>  

b. EN ABLE SELF TRANSFER BANANA A PLACE MOUTH.  

6a. SELF <LOC BOX>  

b. ENABLE SELF TRANSFER SELF A PLACE  

A PLACE 2  <ABOVE BOX>  

c. PRODU CE SELF <ABOVE BOX>.  



 
169  

7a. BOX <LOC A PLACE>  

b. ENABLE SELF TRANSFER BOX A PLACE A PLACE 2  

c. PRODUCE BOX <LOC THE PLACE 2>  

d. AND SEL F <LOC THE PLACE 2> . 

8 a. SELF [CAN] TRANSFER SELF A PLACE A PLACE 2  

 

b. PRODUCE SELF <LOC THE PLACE 2>  

The problem is how to reach the desired state from the current world  

model. First a scheme is constructed by:  

SELF COGITATE A SCHEME.  

This command directs t he system to formulate a scheme. The first  step 

is to look for all occurrences of the final state. This will  be a suggested state, a 

produced state or, as here, a caused BECOME  action.  

If the only occu rre nce is a suggest state then this is set up  as the fi rst 

step of the scheme and the search is repeated with that  state as the required 

one. Otherwise the action producing or causing  the state is examined and a 

search made for enabling states and  causing actions. In thi s case the action 

(4a) matches 5 b and th is is enabled by 5a. The enabling state (5 a) becomes 

the first state of  the scheme because if it is reached the final desired state can 

be reached (by action 4a).  

 

This procedure is repeated with this enabling state taking  the place of 

the final state (tha t is, the enabling state is set up  as a sub -goal leading to the 

final goal). This state ( 5a) says that  SELF must be ABOVE the BOX and the BOX 

must be BELOW the BANANA. But  the BOX is not BELOW the BANANA therefore 

this state must be reached  before the sche me is complete. Also SELF is not 

ABOVE the BOX so this  state is also added to the scheme.  

This final sub -goal SELF <ABOVE BOX >  has been generated by  splitting 

the complex conception ( 5a) into two sub -goals. It matches  the state at 6c 



 
170  

which in the same way adds SELF <LOC BOX> (6a) to  the scheme. 

This matches the state 8b and the scheme is complete  because the action that 

produces it has the CAN modifier and so is  permanently enabled. This is the 

first time in the scheming that an  enabled action has been foun d. When this 

happens the scheme is complete  and practical because it leads from the current 

world to the final  world. Scheming is also terminated if all the outstanding 

states  required are in the world model. The complete scheme is:  

[SELF <LOC BOX>  

BOX <BE LOW BANANA>  

SELF <ABOVE BOX> ]  

Using this scheme the systems must next construct a plan for  reaching 

the first state. This is done by the command:  

SELF COGITATE A PLAN  

A plan is constructed by searching for an action that produces the  first 

state, this is found (action at 8a) and the plan is complete  because the one 

action leads from the current world model to the one  required in a single step. 

The plan is:  

 

SELF TRANSFER SELF P3 BOX.  

 

If this is carried out by:  

SELF DO THE PLAN.  

 

then the first state of th e scheme will be deleted and the state:  

SELF <LO C BOX>.  

 

will be added to the world model by PRODUCE thought 8. The next plan 

will lead to the state BOX <BELOW BANANA> and as P 1 <BELOW BAN ANA> this 



 
171  

is the same as BOX <LO C P1> using the systems built in kno wledge 

that B ELOW specifies a location and LO C is symmetrical. This state can be 

reached by the one step plan:  

SELF TRANSFER BOX P 2  P1 .  

 

which when carried out leaves SELF <LO C P1> as well as the BOX. As  

SELF <LOC BOX> (LO C is transitive and sym met rical th erefore SELF  <LOC PI> 

and BOX <LOC PI> implies SELF <LO C BOX> ), the final state  of the scheme 

can then be reached by the one step plan:  

SELF TRANSFER SELF P 1  A PLACE 2  <ABOVE BOX>.  

 

which produces SELF <ABOVE BOX>, which enables:  

SELF TRANSFER BANANA A PLA CE MOUTH.  

 

which causes the BECOME action which gives the desired final state.  

As soon as the desired state is reached the feeling of the system is  

reduced to zero so that i t  is then ready to solve another problem.  The scheme 

and plan should be noted at ea ch step of this problem  solution because they 

are the systems understanding of what it is doing  and are used to answer 

"how" and "why" questions. For example, the  answer to:  

Why did you move the box?  

is 

I wanted the box under th e banana.  

and the answer to:  

How did you get the banana?  

 

is 



 
172  

I went to the box, moved the box under the banana, got 

on the  box and eat the banana.  

It can be seen that these replies are obtained from all or part of the  

scheme ("why"  questions) and plan ("how" questions) at each point.  The 

following step by step descriptions of scheming and planning  give a more 

detailed account of the processes:  

i) Scheming.  

 

1. Make the required state the desired state.  

2. If all the required states are in the current world model  then the 

scheme is com plete and the scheming succeeds.  

3. Search for a thought (suggest, produce or cause) that  leads to (has 

as its second conception) the required state.  If none can be found go 

back one step in the scheme and  search for another thought. If no 

steps remain sch eming  fails.  

4. If it is a suggest thought add the required state to the  scheme and 

make the first state of the thought the required  state, go to step 2.  

5. Otherwise the thought (produce or cause) contains an action.  

Produce a scheme for each of the state s that enable the  action and add 

to the main scheme. Go to step 2.  

ii) Planning  

 

1. Make the required state the first state of the current scheme.  



 
173  

2. If all the required states are in the current world model  

then the plan is complete and the planning succe eds.  

3. Search for an action that produces or causes a required  state. If 

there are then no outstanding required states  check the plan by 

carrying it out internally (resetting  the world model back to its original 

condition when complete).  If the plan succe eds add the action to it, 

otherwise search  for another action. If no other action can be found go 

back  one step in the plan and search for another action. If no  steps 

remain then no plan is found and the planning fails.  

4. Add the states that enable the ac tion found to the required  states, go 

to 2.   

The scheming and planning algorithms outlined above work back  wards 

from the desired state because there will typically be a large  number of enabled 

actions causing a forward search to have to investigate  a high ly -branching tree 

of possible worlds. One problem with a back  ward search is an action can 

produce a state that prevents a later  action. To try to guard against this the 

plan being generated is  checked whenever possible and" altered if this is found 

to occ ur. However, the method outlined can still fail to find a practical plan if  it 

involves substantial changes to the world model.  

An alternative would be to find some means of pruning the  forward -

search tree using a static evaluation function that could be  combined easily 

with the features of PIDGIN. One way of setting up  such an evaluation function, 

using the pattern matching ability and  VALUE relation of PIDGIN, is mentioned 

in the next section.  



 
174  

b. Example 2 -  The Mikado Problem  

A more complex problem enabl es certain further features of the  

problem solver to be described. The following is a PIDGIN description  of the 

Mikado problem:  

1. ALIVE < SUB AN ATTRIBUTE <FEEL 100 GOOD>> . 

2. DEAD <S UB AN ATTRIBUTE <FEEL - 100 GOOD>> . 

3. KOKO <SUB A MAN>. KATISHA <SUB A WO MAN>  

4. WIFE <SUB A RELATION>. HUSBAND <INVERSE WIFE>.  

5 a. A MAN <HUSBAND A WOMAN 2  > [ NOT]  

b.  AND A WOMAN <WIFE A M AN 2  > [NOT]  

c.   ENABLE THE MAN  BECOME  SELF <HUSBAND  

      THE WOMAN>  

d. AND THE WOMAN. BECOME SELF <WIFE THE MAN>.  

6. KOKO <HUSBAND A WOMAN > [NOT].  

7. KATISHA <WIFE A MAN> [NOT].  

8a. KATISHA <WIFE A MAN> [NOT]  

b.  ENABLE KATISHA TRANSMIT  

c.   <NANKIPOO DO AN ACTION  

d.    CAUSE A PERSON 2  BECOME [HURT] SELF>  

    SELF MIKADO  

e.   CAUSE [ ALlVE] NANKIPOO  

f.    BECOME [ DEAD] SELF.  

9a. [ALIVE] NANKI POO  

b.  ENABLE KOKO TRANSFER NANKIPOO A PLACE  

    A PLACE 2  <LOC MIKADO>.  

10 a. NANKIPOO <LOC MIKADO>  

b .   ENABLE MIKADO PERCE I VE NANKIPOO.  

11 a. MIKADO [NOT] PERCEIVE NANKIPOO  

b.   CAUSE KOKO BECOME [DEAD] SELF.  

12.  [ALIVE] KOKO. [ALIVE] NANKIPOO.  

13.  SELF <EQUIV KOKO>  

This is more difficult than the Monkey Puzzle because of the  increased 

complexity of the thoughts including the use of NOT, because  the system is 

being asked to solve someone else's problem and because  the system starts in 

a final state and th e problem is to avoid any  future deviation from that state.  

The situation as described above enables Katisha to accuse  Nankipoo, 

as she is unmarried, and this will cause Nankipoo to die  which will prevent Koko 

from taking him to Mikado and so Mikado will  kill  Koko.  

If the co mm and:  



 
175  

SELF COGITATE A SCHEME.  

is obeyed then it will be found that SELF (KOKO) is already in the  

desired state (ALIVE). In this case a check is made to see if this  is likely to 

change in the uncontrollable future. In this case Katisha  can denounce 

Nankipoo because she is not married and this will cause  Nankipoo to die which 

will cause Koko to die because he will not be  able to take him to Mikado. This is 

a bad thing in the uncontrollable  future therefore an attempt is made to find a 

sche me that will prevent  it happening. This is possible because although the 

future is uncontrollable the present can be controlled to some extent (as 

described  by those enabled actions whose subject is SELF), and an action can  

change the uncontrollable future . 

The sequence of actions outlined above must be prevented, this  can be 

done by carrying out an action which removes some enabling  state from the 

current world model. Katisha being unmarried (8a) is  the first enabling state 

and this can be disabled by thou ght 5 because  this enables action 5d. This is 

enabled for Koko and Katisha only  therefore the solution is for them to marry.  

Working backwards on a scheme Koko must transfer Nankipoo to  the 

location of the Mikado (9b, 10 and 11). To do this he must be  aliv e (9a) so 

Katisha must be stopped from accusing him (8b,c,d,e,f).  This can be done by 

Katisha becoming a wife of a man (8a). For this  to happen Katisha and the man 

must be unmarried (5a,b). Katisha and  Koko are unmarried (6,7) therefore if 

they get married  this will prevent  Koko dying. The scheme is:  

[KATISHA <WIFE KOKO>  

NANKIPO <LOC MIKADO> ]  

and the action required is:  

KOKO TRANSFER NANKIPOO A PLACE A PLACE 2  <LOC MIKADO>.  

 



 
176  

In both the above examples the problem could have been 

expressed  in many different ways. For example, in practise the rules would  

probably be more general and contain more criteria. The above examples were 

set up with the bare minimum of knowledge required to express and solve the 

problem.  

2.4.5 Teaching and Learning  

If a computer modifi es its output because of some input then  it can be 

said to have learnt from or 'to have been taught by that  input. Thus 

programming can be regarded as teaching the computer.  This is the most 

important type of learning in the current PIDGIN  system -  being t aught new 

facts and rules by the user in Input PIDGIN  (and eventually in English). It is 

hoped that by this means the  computer can eventually be used by the people 

with the problems in  order to help them to solve those problems without 

needing to translate  their problem into a conventional programming language. 

Conversational  problem  solving systems will provide people such as managers, 

designers,  engineers and scientists with a means whereby they can explain 

their  problem in English (plus mathematical nota tion} with conversational  

advice from the computer on inconsistencies and ambiguities so that  these can 

be eliminated as they arise. In this way the computer becomes  a tool to help 

the human problem solver unravel the solution and at  the same time teach th e 

computer the answer so that the solution and  the program for solving the 

problem arise together. The computer is  not being asked to, and is not 

expected to, behave "intelligently"  it is there to do what it is told and to 

complain if it finds that it  cann ot do it. PIDGIN is a small step in enabling this to 

be done  conversationally in English rather than involving special codes and  

languages, card punches and verification, turn -around and transcription  errors, 

incomprehensible and useless error numbers, cor e dumps and  cryptic 



 
177  

messages, octal, hexadecimal, job control and all the other  

paraphernalia and secondary problems that sep arate the user from the  real 

problems and require the intervention of human aid in the form  of a 

programmer in order to sort it all  out.  

However, there is more to learning than programming. It is  possible 

with certain problems to set up systems that learn from the  short - fall between 

their behaviour and their expectations. Although  little work has been done to 

investigate the potential  of PIDGIN in  different learning situations it is felt that 

the nature of the  linguistic deep structure will enable some interesting learning  

possibilities to be investigated. In order to provide a framework  for 

investigation four types of learning are dis tinguished -  rote,  rule, ratified and 

regulated.  

a. Rote Learning  

Rote learning is here taken to mean that the item learnt is  simply 

added to some list or table of items. However, this is not  intended to be a 

definition merely a description of how rote lea rning  is usually implemented. 

From the point of view of a user a system  which only rote learns can only 

answer questions that directly refer  to the information learnt, no deductions are 

made. Rote learning is  often called "parrot learning" when it is done by people, 

this term  indicates that the material was not understood, that is, incorporated  

in the person's memory in such a way that it could be used to relate  diverse 

other information together, but was simply remembered as a  self -contained 

item. In fact quite often a large amount of material  must be learnt like this 

before inter - relationships and connections  can be pointed out and understood. 

A similar step occurs when using  PIDGIN, simple definitions and states are rote 

learnt. It is not  until the rules and connections that combine them are learnt  

that they can be related and so properly understood.  



 
178  

b. Rule Learning  

Rule learning is the name given to the incorporation of sequences  of 

PIDGIN conceptions (in the form of plans, schemes, rules and thoughts)  in the 

memory. More generally programming is a form of rule teaching  and in human 

situations much advice and teaching takes the form of rules.  Although a rule is 

rote 1earnt,in use it expresses complex relationships  between other items.  This 

type of learnin g forms the basis of PIDGIN's learning ability  as has already been 

described. In PIDGIN the word "rule" refers to  "IF - rule", that is, a conception 

connected to one or more other conceptions by the connector IF. Such rules 

form the basis of PIDGIN's  explici t deductive ability (see Section 2.4.3) and 

correspond in many  ways to the consequent theorems of PLANNER. They are 

automatically  invoked by question -answering if the question cannot be 

answered  directly from the memory.  

c. Ratified Learning  

Ratified learn ing takes place when the system generates new  

statements and then confirms them with its environment. In people this  type of 

learning perhaps corresponds to thi nking, that is, ana1ysing  known facts and 

thus discovering new relationships and predicting  like ly hypothesis. In PIDGIN 

there is a special mode in which the  system can generate hypotheses (see 

Section 2.4.1) check them with its  memory for consistency and then confirm 

them with the user for validity.  The essence of this mode of working is 

hypothesis formation.  In PIDGIN this is very simple and as a consequence the 

user gets inundated  with trivial questions. It is done by choosing a conception 

and then  creating a more general but consistent conception from it. This is  

done by making one or more of the actors in the conception vaguer by  omitting 

qualifiers and by replacing the nominal by its category concept.  



 
179  

PIDGIN can also learn by asking questions about vague or 

unspecified parts of a conception. For example:   

John went to the park.  

JOHN TRANSFER SELF  A PLACE PARK.   

immediately leads to questions such as:   

Where did he come from?  

 

How did he get there?  

What time did he go?  

How long was he there?  

How long did it take him?  

Did he intend to go?   

because these questions correspond to information missing fr om the  

original assertion. PIDGIN is thus always aware of what it does not  know.   

Rote and rule learning fill up the memory and slow down the system  

(except when one rule replaces a number of old rules or facts). But  the essence 

of creative learning is -  " to learn is to forget". That  is, to learn is to forget what 

is not essential. Such learning frees  the memory and speeds up the system. 

The usual price to be paid for  replacing a precise rule by a more general one is 

that the general rule  does not always wo rk and has to be backed up by 

auxiliary rules for  special cases. However, this is the way that science advances 

from data  to special rules to general rules and then to general rules plus more  

data and special case rules and then still more general rules an d so on.  It is 

hoped that one day computers will be able to assist in the formulation and 

analysis of these rules.   

d. Regulated Learning  

Samuel's checker player (Samuel 1959) was one of the first computer 

programs to successfully learn to improve its perf ormance by playing. The 

general scheme of the learning mechanism used is to associate  each one of a 



 
180  

set of state or pattern recognisers with a weight in  order to adjust 

its importance relative to the others. The sum of the  product of the states and 

weights  can then be used to assign a figure of  merit to any situation. For 

example, in a board game to rate each possible next move so that the best can 

be chosen. Learning is achieved  by regulating the weights in such a way that 

good board positions are  rated we ll and bad positions rated badly. In Samuel 's 

program the state  recognisers were carefully constructed using knowledge 

derived from  human checker players and the weights were then discovered by 

the program  through playing games with good checkers players. One limitation 

of  Samuel 's original program was that it simply added all the weighted  states 

together so if one state was important only in combination with  one or more 

other states such a technique would not be able to take  advantage of the fact.  

It would  be possible to include such a learning technique in  PIDGIN so 

that it could be utilised to improve scheming and planning.  A state may be 

associated with a good, strong and active rating using  the VALUE relation and 

this can be regarded as a weight. Furthe r, in  PIDGIN states may be combined 

using conjunction and disjunction and  negated using NOT and the combination 

can be assigned a weight by  specifying that is suggests some other state and 

assigning a weight  to that state. A system can be envisaged in whic h these 

weights are  improved in a forward search game -playing environment but this 

has not  been investigated in detail.   

A more interesting possibility is to combine ratified and regulated  

learning so that the hypotheses generated were new state recogniser s and the 

ratification was not obtained directly from the user but by  using them in a 

regulated learning environment. A number of improvements suggest 

themselves, for example, generating the hypotheses by  generalising only the 

most successful state recogni sers. However, this  possibility has not been 



 
181  

studied because the way in which hypotheses should be generated 

and ratified is such an enormous pro blem.  



 
182  

CHAPTER 3  EIKASIA -  A PIDGIN BASED CHESS 

SYSTEM   

Winograd chose to base his conversational system on a to y-world  

consisting of coloured b10cks that could be moved around a table - top  by 

means of a crane. By thus sharply delimiting the context Winograd  could 

construct a self -contained and complete system. His system  accepts most 

grammatical English sentences di rectly related to this  toy -world and framed in 

a particular vocabulary. By defining a toy  world the limitation of vocabulary are 

made less arbitrary and the  semantic relationships are well defined. Many 

conversational systems  in the past have foundered on the cliffs of language. 

Those that have  tried to reduce the size of the problem have usually done so in 

a way  that does not effectively restrain the user. For example, although  

baseball seems like a well -defined single subject questions about  baseball can 

quickly extend into many other areas. Winograd easily  and neatly defines a 

small part of English by placing the user in a  new world of just a few objects 

and relationships. The limits of this  world are largely written on its face and 

though the awkward use r might  ask "What is under the table" or "How often do 

you oil the crane" he  should not be surprised at the systems response.   

In order to test some of the ideas in PIDGIN with a practical  problem it 

was necessary to find a toy -world in which to work. It w as decided that a two 

kings, one pawn chess -endgame was a suitable, well  defined problem. It has 

fewer objects than Winograd 's toy world and  a better defined co -ordinate 

system but the relationships between the  objects are much more subtle. Also, 

an algori thm for solving this  chess endgame was available from S. Tan at 

Edinburgh University (Tan  1972). The predicates and action schemes defined in 

this algorithm  were taken as the basic actions and states in a conversational 



 
183  

PIDGIN  system called EI KASI A.  

 

3.1 A History of Chess Systems  

The history of computer chess divides, approximately into two  camps, 

the first is concerned with writing a program that will beat  as strong a human 

player as possible, the second is concerned with the  chess problem only in so 

far  as it embodies other more general problems.  EIKASIA is in the l atter camp. 

As a chess player EI KASIA is very poor  but it is still of interest because of the 

way in which it is constructed. A program that played chess at grandmaster 

level would only be  of interest in so far as it demonstrated general problem -

solving tech niques and EI KASIA is clearly a general problem -solver.  

Some of the work in the latter camp has been done without actually  

writing a computer program that plays chess. An important early pap er  on the 

subject was written by C. Shannon (1950). In this paper he  lays down features 

that he considers necessary for inclusion in any  chess program. Some of these 

features are details of evaluation  functions, static positions and minimax as well 

as forw ard pruning of  the search tree. Later Turing (1950) published a paper 

extending  Shannon's ideas and then Samuel (1959) produced a paper which, 

though  it concerned a checkers playing program, described how many of these  

ideas had been built into a practical  program.  

The first chess program to incorporate these ideas was written  by 

Bernstein (1957). This program aroused some public interest and  it managed to 

play at "passable amateur" level taking an average of  two minutes per move. 

Also at about the same tim e Newell, Shaw and  Simon wrote a chess playing 

program based upon ideas from GPS (Newell  1958). This program was 

fundamentally similar to the other work that  had been done but it approached 



 
184  

the subject from a different viewpoint,  that of the goal/sub -goal 

scheme. They also introduced further  refinements to tree -searching including 

the alpha -beta algorithm.   

From 1958 until recently the only notable contribution has been  a paper 

by Good (1968) listing a number of features and ideas to bear in mind when 

writi ng a chess program. Good's paper is a major summary and analysis of the 

complete field and the fact that his idea do not  seem to have been acted upon 

until recently suggests that most chess  programmers in the first camp regard 

the problem as simply a progr amming one.  

 

In 1973 A.L. Zobrist and F.R. Carlson published a paper (Zobrist  1973) 

describing a chess program that had been designed with a slightly  different 

objective from usual. Their system was designed so that it  could be given 

"advice" by expert hum an-chess players. This advice  was given in the form of 

routines written in a simple language based  on chess notation. Chess players 

with no previous computer programming  experience could quickly learn this 

language and use it to correct  faults in the progr ams play. One of the 

difficulties of writing chess  programs has been the difficulty of translating chess 

knowledge into  computer notation. By enabling the chess expert to "program" 

the  computer directly it was hoped to overcome the translation problem.  The 

routines that can be defined in their language consist of a  pattern and a 

weighting. The system uses the pool of routines to try  to find patterns on the 

board and associate weights with the m . The  system is set up so that the 

patterns are independent of th e actual  positions of the pieces but only depend 

on their relative positions.  For example, a routine can be defined that matches 

bishops and knights  on the back row and returns a negative weight. This would 



 
185  

tell the  program to "get your bishops and knights  off the back row". 

This  type of advice corresponds to SUGGEST connections in PIDGIN.  

Their system uses this advice as a form of static evaluation  function to 

prune the look -ahead tree. They go on to say that they  believe computers will 

use advice - taking f or the performance of tasks  that demand more "intelligence 

than is needed for the simple clerical  chores they now perform.  

The language accepted by Zobrist's program is a very simple  

programming code. It would seem that a much more sophisticated input  

lang uage is required to improve the performance. However, such a  language 

cannot be a normal programming language otherwise no problem  has been 

solved. I have taken PIDGIN as this language and have tried  to justify this by 

considering the design of a PIDGIN ba sed two  kings, one pawn chess -endgame 

playing program called EIKASIA.   

 

3.2 A Description of the Endgame Problem  

Most chess playing programs let the endgame take care of itself.  In fact 

the seemingly trivial single pawn ending is more difficult than  most p uzzle 

problems. It has the additional advantage that human  players seem to use 

knowledge gained from chess literature to solve  it but at the same time there is 

no obvious numerical evaluation function  that can be used. The problem thus 

requires a solution that involves  storing and efficiently utilising a great deal of 

specific chess  knowledge.  

The work done by S. Tan at Edinburgh University (Tan 1972) illustrates 

one method for storing such knowledge. Other work has been  done on the 

endgame problem (Huberma n 1968) but the approach taken  by S. Tan fits in 

well with ideas incorporated in PIDGIN. The program  developed by Tan is a 



 
186  

computer representation of the knowledge contain  ed in a number 

of books on chess endgame theory (Averbakh 1958, Fine  1941). This 

kno wledge is stored as a decision tree, the nodes are  predicates for recognising 

"good" board patterns and the leaves are  action schemes. A similarity can be 

seen here with the advice - taker  chess program of Zobrist but the patterns are 

combined to form a tree  rather than being associated with a single integer 

weight. A path  down the binary tree is determined by a particular board 

situation,  at each node the result of applying the associated .predicate will  

select one of two paths corresponding to succeeding or  failing to match  the 

"pattern". The action schemes specify what is to be done in each  particular 

board situation.  

More exactly there is a board of 64 squares, each referenced by  two co -

ordinates, the first specifies the file, lettered from A to H,  left to  right, and the 

second the rank, numbered from 1 to 8, bottom  to top. There is a white king, a 

white pawn and a black king on the  board, and the white pawn always moves 

upwards. White wins if the pawn  reaches the eighth rank and is not captured 

immediately . A game is  also terminated by a draw, either because the black 

king takes the  pawn or a stalemate situation occurs.  A position is defined by 

the board configuration (the co -ordinates  of the three pieces) together with the 

information about who is on the  m ove.  

A position defines a situation which is either intermediate or  terminal if 

the one on the move is stalemate or black has captured the  pawn or the pawn 

has been successfully promoted. A game may also be  terminated by either side 

resigning or by mutual agreement. A game  may be started in any legal chess 

board configuration by mutual agreement when all three pieces are on the 

board.  



 
187  

Let S be the set of situations. A (unary) predicate P is a  

partial function from S to true or false. Every predicate defines  a subset of S, 

namely the inverse image of true. An action scheme is  a partial function from S 

to S. Every action scheme defines, for each  situation in its domain, a legal 

move applicable to the situation.   

If A, A 1, A2 are variable s for action schemes  and P, P 1 P2 for  

predicates then:  

A ::= <elementary action scheme>  

 

 if  P then  Al else  A2 close   

 

<elementary action scheme> ::= PAWNSTEP PAWNJUMP. MOVE2  

     WGOPAWN BGOPAWN LETPASS  

     RUN SUPPORT MANOEUVI  

     MANOE UV2 MANOEUV3 MANOEU4  

     MANOE UV 5 N OP   

 

P ::= <elementary predicate>  

 not  PI  

 P1  and  P2  

 P1  or  P2  

 if  P then  P1  else  P2 close  

 

< el ementary  predicate> ::= ADVANCE CAPTURE SELFBLK  

    MATCH 1  MATCH2 WSTALEM  

    BSTALEM DOMINANT CANRUN  

    BKA HEAD NEEDSUP WSEE  

    BSEE LOOKA HD  

The two kings, one pawn chess -endgame program is constructed from  

the above predicates and action schemes. The way they are put together  

represents the programs knowledge of playing chess. They are put  together in 

sentences of the form:  

<advice sentence> ::= dummy  

 

<val, A>  

if  P then  <advice sentence>  

 else  <advice sentence> close   

where dummy is a do -nothing sentence, <val, A> is an ordered pair 

with  val=WHITEWIN, DRAW or EVALUATE. If val is EVALUATE then the value of  



 
188  

the situation is obtained by executing A and searching fu rther 

through  the game tree.   

The knowledge structure can be seen as a binary decision tree  with 

non - terminal nodes corresponding to predicates and terminal nodes  to pair -

wise disjoint subsets of S.   

The action schemes and predicates listed above were extr acted by  Tan 

from chess literature on the endgame, they are the building blocks  of the 

program and it is profitable to consider how some of them arose.   

The predicates relate to the position or relative positions of  the pieces. 

Some of these are fundamenta l, for example ADVANCE is true  if and only if the 

pawn can advance one square without being taken,  CAPTURE is true if and only 

if the pawn can be captured immediately  and SELFBLK is true if and only if the 

white king is on the same file as  and immediately in front of the pawn.  

MATCH1 and MATCH2 are true if the pattern specified occurs some  

where on the board. Each takes two sets of co -ordinates relative to  the pawn. 

MATCHI is true if the two kings are at the specified co  ordinates, MATCH2 is 

true in this ca se and also if the left - right inverse  of the co -ordinates matches. 

For example, if the configuration:  

WK   

   

WP  BK 

occurs anywhere on the board then MATCH 1 (1,  3,  3,  1) and MATCH2 

(1,  3,  -3,  1)  will both be true.  



 
189  

There are three other general predicat es, WSTALEM and 

BSTALEM are true if the specified colour cannot make a legal move, and 

BKAHEAD is true if the black king is ahead of the pawn.  

The other predicates relate more specifically to the one pawn  ending. 

The concepts of critical or key squares and  the "rule of the  square" are stressed 

in the chess literature as being important in the  endgame and these concepts 

are implemented by the predicates DOMINANT  and CANRUN.  

The following section of stylised program gives some idea of  how the 

program is const ructed by Tan in the programming language  POP-2:  

if  colour(machine)=white then  

 

 if  rank (whitepawn)=7 then  

  if  advance then  <WHI TEWIN, PAWN 1 >  

  elseif  rookpawn then  

   if  selfblk then  

    if  wstale m  then <DRAW, NOP>   

    else <WHITEWIN, LETPASS> close  

 

   else <DRAW, WGOPAWN> close  

  else  

   if  wtry( - 1 ,O, 1 ,O) or wtry ( - 1, - 1,0,1) then  

   else  if  selfblk then  <WHITEWIN, LETPAS >  

    else  <DRAW, WGOPAWN> close  

   close  

  close  

 close  

else  ...   

 

 

This is clearer if drawn as a tree:  



 
190  

 

3.3 PIDGIN and the Endgame  

 

EIKASIA is a particular, integrated extension of PIDGIN that  is it is a 

PIDGIN system incorporating numerous concepts, rules, thoughts,  beliefs and 

dictionary entries concerned with a particular problem.  It is integrated in the 

sense that the extension i s a co mp lete solution  to the problem. However, this 

does not mean that i t  is the best  solution to the problem. By further dialogue 

with users the solution  might be improved or extended to cope with a wider 

range of problems.  EIKASIA as described here is on ly the design of a PIDGIN 

based  one pawn chess -endgame system because of the limited nature of the  

PIDGIN implementation. Also it is not intended to be a practical  chess endgame 

system in that it will not necessarily beat or play  as quickly as a program 

designed specifically for the purpose. However,  chess was not the motive for its 

development. It will have served  its purpose if it shows that PIDGIN is capable 

of solving problems as  complex as the one pawn endgame without losing its 

flexibility.   

Having co mpleted the initial design it seems that the problem  chosen 

might not be the most suitable because the solution is so clearly  and efficiently 



 
191  

demonstrated by the program of S. Tan. It might have  been better 

to have chosen an ill -defined problem and demonst rated how  PIDGIN can be 

used as a conver sational aid to the gradual development  of the solution 

because this is really what PIDGIN was designed for.  Nevertheless it is hoped 

that while reading the following description  of EIKASIA the way in which the 

syste m could have been gradually developed  will be bor ne in mind.   

 

3.3.A PIDGIN Particular Extensions  

The extension required to the initial PIDGIN system in order to  

construct a chess endgame system can be divided into four parts:  

i)  Chess concepts: The pieces , board and other objects, relations  

and attributes.  

ii)  Board states: The rules and thoughts required to recognise  board 

patterns of significance in the endgame.  

iii)  Board actions: The legal moves, the good and bad moves plus  

their enabling states and th e states they produce.  

iv)  Positive and negative states: The final states, suggestions  for 

positive and negative play, and positive and negative  board -pattern 

recognisers.   

 

3.3A1 . Chess Concepts  

EIKASIA manipulates a black king, white king, and a white pa wn  which 

may be in a box or anywhere on an 8x8 board of 64 squares. The  view is 

initially a 2x2 grid with the structure:   



 
192  

OPPONENT SPECTATOR 

BOARD BOX 

This can be set up by the following PIDGIN:  

ALL PLAYER <SUB A PERSON>.  

 

ALL OPPONENT <SUB A PLAYER>.  

AL L SPECTATOR <SUB A PERSON>.  

ALL BOARD <SUB AN OBJECT>.  

ALL BOX <SUB AN OBJECT>  

The view can be set up by the command:  

SELF TRANSMIT * << OPPONENT SPECTATOR>  

 

<BOARD BOX >>  HERE VIEW  

However, when a game is being played the view is changed to an 8x8  

grid repr esenting the chess board. This is defined as:  

ALL SQUARE <SUB A PLACE>.  

 

NEWBOARD <SUB A BOARD>.  

 

A1 <SUB A SQUARE>. A2 <SUB A SQUARE>.  

 

... H8 <SUB A SQUARE>.  

$  << A8 B8 ... H8>  <A7. ... H7 >  .. .  

  <A 1  .. . H 1>> :NEWBOARD.  

 

LASTRANK <SUB A PLACE>.  

 

$ <A8 B8  C8 D8 E8 F8 G8 H8> :LASTRANK.  

 

In a normal chess game NEWBOARD would contain all the pieces  laid 

out correctly but in this endgame they can be set up anywhere  therefore the 

board is initially empty, and the pieces are in the BOX.  

ALL PIECE <SUB AN OBJECT> . 

 

ALL KING <SUB A PIECE>.  

ALL PAWN <SUB A PIECE>.  

BKING <SUB A [BLACK] PIECE>  

WKING <SUB A [WHITE] PIECE>.  

WPAWN <SUB A [WHITE] PAWN>.  

BOX <CONT WPAWN>.  



 
193  

BOX <C ONT WKING>.  

BOX <CONT BKING>.  

The system keeps track of the entities in the view and a change  of  

location of anyone is automatically recorded by a corresponding  change to the 

view. This is the internal mechanism that simulates  a change of location being 

performed by an "arm" and picked up by a  camera.  

3.3A2. Board States  

S. Tan has fourteen elementar y predicates over board positions.  These 

can be incorporated in EIKASIA by defining the relevant states  in terms of the 

positions of the pieces or by appropriate patterns.  For example, Tan defines the 

predicate ADVANCE as:  

i) function advance s; vars x y;  

 

 wk(s(5),s(6)+1) - >x;  

 db k(s(5),s(6)+1) - >y;  

 i f x= 0  or y= 0  then false  

 e1seif y= 1  and x  > 1 then false  

 else true  

 close  

 

end  

In English this is, the pawn may advance if the square above it  is not 

occupied and the black king is more than one square away fr om  it or the white 

king protects (is next to) it. In PIDGIN this becomes:  

[ADVANCE] WPAWN IF  

 

 A SQUARE <ABOVE WPAWN><CONT NO PIECE>  

 AND BKING <FAR THE SQUARE>  

  OR WKING <NEAR THE SQUARE>.  

This definition will automatically fail if the pawn is not on  the  board or is 

on rank eight. The following examples illustrate  other techniques:  

ii) function capture s;  

 

 comment true iff white pawn can be captured  immediately  

 if dbk(s (5),s(6))=1 and dwk(s(5),s(6)) >1  



 
194  

  then true else false close  

end   

 

A PIECE <CAPTURE A PIECE 2>IF  

SELF DO <A PLAYER TRANSF ER THE PIECE A SQUARE THE PIECE 2>  

AND SELF DO <A PLAYER 2  [NOT] TRANSFER A PIECE 1  A SQUARE 3  

      THE PIECE>.  

During a game a piece can only be transferred to another square  by a 

legal chess move. The chess moves are defi ned by means of enabling  

conditions (see next page). Note that a piece can be treated as a  place when it 

is actually the square occupied by the piece that is  being referred to. This is 

possible because the pieces are in the  view and can be found by searchi ng.  

iii) function se l fb lk s;  

 

 comment true iff white king blocks the white pawn;  

 if s(1)=s(5) and s(2)=s(6)+1 then true  

 else false close  

end   

 

 

[SELFBLK] WPAWN IF  

 WKING <ABOVE WPAWN><COL WPAWN><NEAR WPAWN>.   

 

 

iv) function match1 a b c d;  

 if s(1)=s(5) +a and s(2)=s(6)+b and  

 s(3)=s(5)+c and s(4)=s(6)+d then true  

 else false close  

end   

 

 

This matching ability is already built into PIDGIN for  examp1e:  

SELF IDENTIFY * << WKING><A SQUARE 1><WPAWN A SQUARE 2  

    BKING >> . 

 

 

will match:  

WKING    

   

WPAWN  BKING  



 
195  

3.3A 3 Board Actions  

The pieces are moved by the TRANSFER act, the actions of which  are 

automatically reflected in the view by the system. If the view  does not contain 

the piece transferred or the action is not enabled  then the command will fail. 

The follo wing requirements must be met:  

i)  when a game is not in progress any move is allowed;  

ii)  during a game moving a piece onto a square that is already  

occupied causes the piece that was there to be moved to the box;  

iii)  the moves of the pawn and king must b e defined by the correct  

enabling conditions to reflect the rules of chess.  

This can be done by the following PIDGIN ,statements:   

 

A GAME [STOP] ENABLE  

 

 A PERSON TR ANSFER A PIECE A PLACE A PLACE 2  

A PERSON TRANSFER A PIECE A PLACE  

   A SQUARE <CONT A PIEC E2>  

 PRODUCE THE PIECE 2  <LOC BOX>.  

A [COLOUR] PLAYER [ CAN] TRANSFER A [COLOUR] PAWN  

 A SQUARE A SQUARE 2   <COL THE SQUARE>  

     <NEAR THE SQUARE>  

     <CONT NO PIECE>.  

A [COLOUR] PLAYER [CAN] TRANSFER A [COLOUR] PAWN  

 A SQUARE A S QUARE 2  <ABOVE THE SQUARE>  

     <NEAR THE SQUARE>  

     <NOTCOL THE SQUARE>  

     <CONT A [COLOUR 2 ] PIECE>.  

A [COLOUR] PLAYER [CAN] TRANSFER A [COLO UR] KING  

 A SQUARE A SQUARE 2  <NEAR THE SQUARE>  

     <CONT NO [COLOUR] PIECE>.   

 



 
196  

3.3M Game Playing  

 

The knowledge contained in the program  written by S. Tan can be  

divided into two parts, that within the statements making up the program  and 

that implied by the ordering of the statements. The rules of PIDGIN  are the 

equivalent of the statements of the program. Each rule independently 

recognis es a particular situation and enables an action which  produces a state 

suggesting either a win or a draw. S. Tan suggests  that the strength of an 

experienced player is related to the organisational  structure of his chess 

knowledge. This organisation could be built  into PIDGIN by the construction of 

large IF - rules and it is this type  of structure that would be built up if PIDGIN 

were told exactly what  to do in each situation. This is the type of knowledge in 

S. Tan's  program but it is not the type used to te ach chess (for example, it  is 

not the type found in chess books). Teaching chess usually consists  of 

presenting a number of guides and rules and then leaving it up to  the person 

learning to discover the way in which they must be combined  together. This is 

usually done by playing chess and learning from  experience.  

One of the features of PIDGIN is the ability to develop the system  by 

adding new rules and revising old ones. This implies a loose organisation of the 

rules and it would seem that the more rigid t he organisation the more the user, 

or teacher, must be aware of it. At one  extreme each rule is independent and 

the user may freely change or add  a rule without being aware of the others. At 

the other extreme the  complete system is one rule and to change a ny part the 

user must be  aware of all the other parts. One extreme corresponds to 

PIDGIN's  conversational but inefficient way of working and the other to S. Tan's  

program.   




