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ABSTRACT 

PIDGIN is a conversational computer programming language with a 

structure that facilitates the construction of computer systems that accept 

statements, answer questions and obey commands in natural language. It also 

incorporates a deductive problem-solving capability to enable such systems to 

solve non-trivial application problems. PIDGIN is intended to form a base for 

natural language problem-solving systems that can be used directly by the 

people with the problems, for example, designers, managers, engineers and 

scientists. 

Because any system constructed using PIDGIN consists entirely of 

PIDGIN statements it may be conversationally updated to alter fundamentally 

its capabilities within the limit of the basic PIDGIN primitives. It also enables 

the system to answer questions about its own structure and workings and so 

assist the user to improve its capabilities. By working with the system in this 

way the user should be motivated to teach the system new heuristics for 

improving its performance. 

The syntax of PIDGIN is based on the representation language 

developed by R. Schank and the semantics on the PLANNER language of C. 

Hewitt. PIDGIN incorporates some novel and powerful programming features 

such as success-failure backtracking; meaning-invoked rules; meaning 

restricted variables; the ability to specify the requirements and results of any 

command; the ability to generate programs automatically using this 

information; and the ability to generate automatically knowledge about the 

system's workings. 

The design of PIDGIN has been worked out in detail and a subset of the 

language has been implemented using the programming language POP-2. The 
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limitations and possibilities of PIDGIN have been investigated by 

working through the design of a chess endgame system, and the translation 

between English and PIDGIN has been investigated and PIDGIN equivalents for 

many semantically difficult English constructions have been worked out. 
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CHAPTER 1 INTRODUCTION 

1.1. Outline 

The world confronts us with a series of increasingly complex problems. 

Computers are helping us to solve these problems by taking over more and 

more of the mundane clerical work. Because of their speed, accuracy and 

efficiency they enable repetitious and tedious clerical work to be handled 

automatically. But computers can also be used to manipulate complex patterns 

and because of this have been used to model structures and control and 

optimize processes, all of which previously required skilled personnel. This is 

because much time and effort has gone into the precise, formal solution of each 

of these problems. 

Research is being done into the way in which complex problems can be 

solved by computers. A major part of AI (Artificial Intelligence) research work 

has been involved with this type of investigation. One particular branch of the 

investigation is concerned with creating a computer system which understands 

natural languages, such as English. Achievements in this area would have many 

applications, for example: 

i) If computers "understood" English they would become available to 

a far wider range of users, such as managers and designers, people 

without the time or inclination to learn a conventional programming 

language. 

ii) People would be able to help computers solve difficult problems by 

interacting with them in some natural language. 

iii) The linguistic nature of much information suggests many 

applications for computer programs that understand language. For 
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example, information retrieval, index construction, machine 

translation, précis writing and report writing. 

iv) Voice communication with computers would be of benefit in many 

applications especially if the person did not need to learn a special 

language. 

v) Language itself is one of the most complex of human abilities and 

investigating its structure may help us understand more about the way 

the human brain works. 

This thesis is concerned mostly with the first two points above. 

It has long been known that the straightforward approach to the 

solution of complex problems, such as chess playing, immediately comes up 

against what is called the "combinatorial explosion". This is the uncontrollable 

increase in the time the computer must take to investigate all the possibilities 

of each new step. For example, if a chess program tried to examine ten 

different moves for 20 moves ahead, and each move takes one micro-second to 

analyse, then it would take about 10 million years to make a single move. One 

solution to this problem has been to find ways of rejecting most of the 

possibilities. For example, if only six moves ahead were considered the above 

chess program would need only one second to make a move. The rules used to 

limit the search are called "heuristics". Professor Sir James Lighthill (1973) 

states: 

"It is important to understand the meaning attached to this adjective 

'heuristic' which increasingly permeates the Artificial Intelligence literature: it 

means that the program stores and utilises a large amount of knowledge 

derived from human experience in solving the type of problem concerned." 
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It is clear then that the investigation of methods for 

improving the storage and utilisation of human knowledge is important to AI. 

The more human knowledge that can be incorporated in a program the more 

the combinatorial explosion can be curtailed and the better the program's 

performance will be. Thus it is important to find better ways of allowing humans 

to communicate their knowledge and experience to computer programs. 

We are used to communicating this information to others using our 

natural language. When this type of information needs to be communicated to 

computers, however, it must first be translated into a computer language. If 

computers could be programmed to extract such, information from natural 

language then they could be taught the heuristics necessary to cut down the 

combinatorial explosion when solving complex problems. 

One approach to this problem is the investigation of computer models 

of linguistic memory. M. Ross Quillian (1968) has proposed such a memory 

model with a number of attractive features. It is simply constructed with an 

appearance analogous to neural networks, yet it has a good inductive ability 

and ~ behaviour which corresponds with human linguistic behaviour in areas 

such as word association. However, Quillian's "semantic memory" is a static 

structure with no deductive or planning capabilities. After some initial attempts 

to construct a more comprehensive system based on S. Lamb's stratificational 

grammar plus networks analogous to those of Quillian, I abandoned this 

approach in favour of a procedure oriented system similar to that of T. 

Winograd(1971). 

Winograd's system is a complete, working conversational system that 

understands English concerned with a simple "world" containing coloured blocks 

on a table, plus a crane for moving the blocks. The system will accept new 

information about its world, answer questions about the position of the blocks 
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and what is has done to them and obey commands concerned with 

moving the blocks around. The idea of setting up a question-answering system 

to investigate the problems of language is not new, but the idea of precisely 

defining a "toy world" to restrict the language without otherwise arbitrary 

restraints and the methods he used to translate and store the assertions, 

questions and commands were first brought together in his system. His system 

translates English into a tree structure using a syntax analyser based on the 

ideas of systemic grammar developed by M.A.K. Halliday. 

This structure is then translated into the theorem-proving language 

PLANNER. Because the English is translated into PLANNER the full power of this 

programming language is available to help it make complex deductions and 

create plans. However, Winograd's system is still rigidly limited to its toy-world 

and any extension to this would require substantial reprogramming. I hoped to 

simplify this problem by setting up a system that used the same language for 

the result of syntax analysis, the deductive program and programming the 

system. 

C. Hewitt's PLANNER programming language (1972) is the deductive 

base and "deep structure" of Winograd's system but it was not designed for the 

latter purpose. It was designed as a programming language to enable people to 

write theorem-proving model-building goal-directed programs. G. Sussman and 

others have objected to the way that PLANNER leads the user into writing 

programs that thrash around for the solution and they have defined the 

language CONNIVER to overcome these objections by removing PLANNER's 

automatic backtrack control scheme and providing the user with more primitive 

operators. I have defined a language which takes another approach. 

The reason that PLANNER programs thrash is that the system does not 

know what it is doing. One way to overcome this is to remove the automatic 
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control and force the user to program it explicitly. The approach that 

I have taken is to provide the system with more information about what it is 

doing so that the automatic control can stop itself thrashing. This I did by 

basing a language upon the deep structures of natural language in the form 

proposed by R. Schank. The essential difference between this approach and 

that of PLANNER and CONNIVER is that the latter are programming languages 

designed for people whereas the former is an implementation language for 

conversational systems. An implementation language is a language designed to 

simplify the problem of implementing some other language, in this case 

English. It is not designed specifically as an easy language in which to program 

but as a language into which natural language may be easily translated. 

However, it is not just a static data-structure like Quillian's semantic memory or 

Schank's representation but a deductive goal-directed procedural language like 

PLANNER. 

R. Schank has been refining a representation for the deep structure of 

natural language for a number of years, together with a translation scheme 

based on Conceptual Dependency theory. This theory was developed by Schank 

as a computer orientated approach to the problem of natural language analysis 

and translation. He claims the bulk of what people talk about can be reduced to 

his representation. It therefore seems like an ideal base upon which to build a 

conversational system. I planned to design a language with a PLANNER-like 

control structure" intelligently" directed by a data-base constrained to Schank-

like deep structures. This initial language was called Conceptor. Conceptor was 

similar to PLANNER but the patterns were not arbitrary lists but conceptions. 

Conceptions were, roughly, one-dimensional representations of Schank's C-

diagrams that is, unambiguous representations of the meaning of natural 

language sentences. The introduction of syntactic and semantic restrictions on 

the patterns of PLANNER meant that Conceptor had a meaning-directed data-
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base search, and a meaning-directed invocation of procedures, and 

this eliminated some of the thrashing of the system by restricting the matches 

found. 

However, Conceptor was only a half-way stage. Although it had a data-

base of conceptions the program that manipulated the data-base was separate 

from that data-base and still constructed from programming features such as 

labels, gotos, if-thens and loops rather than natural language features such as 

needs, schemes, states and plans. This meant that the relations between 

conceptions could not be manipulated by the program in the same way that the 

conceptions themselves could. Replacing these features involved abandoning 

the distinction between the data-base and the program and replacing the usual 

programming features by features related to natural language. Many 

advantages result from taking this step: 

The system may answer questions concerned with its own workings. As 

the system can explain its current problem-solving rules to the user it becomes 

much easier to modify the system conversationally. 

Because the problem-solving system is programmed in the same 

language that the English input is translated into a conversational user may 

extend and modify all parts of the system, not just the data-base. 

The translation from natural language is simplified because the artificial 

step of translating into a programming language is removed. 

The system may be conversationally extended to cope with new 

problems. 
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The generation of output is simplified because the system 

works in the deep structure of English. For example, all its plans and actions 

are expressed in this deep structure. 

I have called the language incorporating these ideas PIDGIN. PIDGIN 

has been implemented using the programming language ABC, a language that 

was specially designed and developed for the task. PIDGIN statements are 

either conceptions, with a syntax based on Schank's conceptualizations, or 

relations between conceptions, called thoughts. The way in which conceptions 

can be related together is based on R. Abelson's (1973) description of how 

Schank's notation may be extended to build belief systems. However, Abelson 

does not consider how these relations may be made to realise a computer 

deductive problem-solving system. I have approached this problem by trying to 

implement a chess-endgame program called EIKASIA by combining chess board 

predicates and action schemes using relations similar to those discussed by 

Abelson. Before discussing the historical background to PIDGIN in more detail I 

would like to more clearly define PIDGIN as a computer language. The following 

types of language can be distinguished: 

(1) Natural languages - used for communication 'between people for 

unlimited discourse. E.g. English, Chinese. 

(2) Artificial languages - specialised formal languages used for precise 

description. 

(a) Logic languages - used for precise human communication. E.g. 

predicate calculus. 

(b) Computer languages - used for man-machine communication. 
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(i) Programming languages - used for algorithm 

communication. E.g. Algol, LISP, PLANNER 

(ii) Representation languages - used for data or knowledge description. 

E.g. Schank's representation 

(iii) Realisation languages - used for constructing knowledge 

algorithms, a combination of a programming and a representation 

language .e.g. PIDGIN 

The above division is not meant to be exhaustive or definitive; for 

example, Esperanto is an artificial natural language, Algol is used for human 

communication. It is merely meant to show the difference between PIDGIN and 

other programming languages. 

Throughout this thesis when I talk about natural language I am 

referring to that part of natural language that can be translated into Schank's 

notation, and thus PIDGIN. The extent of this is discussed by Schank (1969b). 

Similarly when English is referred to I mean that subset of English that can be 

handled by PIDGIN. Just how large this subset is discussed in Chapter 4 and 

suggested by the examples throughout the thesis. 

This thesis consists' of five chapters numbered from 1 to 5 and three 

appendices, I to III. Chapters are divided into sections which are numbered and 

can be referred to by chapter.section number (e.g. 1.2, 3.2). Sections are 

divided into sub-sections which are numbered (e.g. 1.2.1, 2.3.1); both sections 

and sub-sections will be referred to as sections. Sections are divided into 

lettered divisions (e.g. A, B, C...) which are further divided 'into numbered 

parts (e.g. 1, 2, 3...). Parts are divided into lettered segments (e.g. a, b, c...) 

and these into pieces (e.g. (i), (ii), (iii) ...). If a sequence of short points is 

given in a section, part or division then piece numbering is used. 
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1.2 A History of Question-Answering Systems 

Attempts to set down algorithms for translating English into logic have 

been made for hundreds of years. When computers were developed it was 

natural to consider using them for this purpose, but the first practical systems 

were not developed until about 1960. During the last fifteen years many such 

systems have been developed. There have been many different motives for 

developing these systems, for example, some are more concerned with the 

syntax analysis of English, some with setting up deductive systems, some with 

the problem of representing knowledge in computers, some with relating such 

systems to other problems such as picture processing or information retrieval, 

and others with building complete question-answering systems. 

In the brief historical summary below a number of these projects are 

described, but although they are presented as separate self-contained units 

occurring at a particular time, it must be remembered that they all extended 

over a number of years and borrowed heavily from each other. The summary is 

extracted from a number of sources but mainly from the summaries of R.F. 

Simmons (1965, 1969), the Machine Intelligence series (annually from 1967), 

the Proceedings of the International Joint Conference on Artificial Intelligence 

(1969, 1971, and 1973) and the following three books: 

Computers and Thought, ed. Feigenbaum and Feldman, 1963 

Semantic Information Processing, ed. Minsky, 1968 

Computer Models of Thought and Language, ed. Schank and Colby, 
1973. 

One of the earliest papers on question-answering systems was by 

McCarthy (1959) and in 1960 one of his students, A.V. Phillips, developed a 

working system. It was written in LISP and answered simple questions in a 

subset of English. The sentences were analysed by a simple context-free phrase 
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structure analyser into five constituents - subject, verb, object, place 

and time; everything else was ignored. To answer a question it made a linear 

search through its data-base of stored sentences until a matching entry was 

found, which was then output. If no match was found the programs gave up 

without attempting to make any deductions. The system was in advance of 

some other systems developed at the time in that it could add new sentences 

to its data-base as it proceeded and thus it had a simple rote learning ability. 

One of the systems with a fixed data-base was developed by B.F. Green 

(1961) at Lincoln Laboratories and was called BASEBALL as it could answer 

questions about the time, place, teams and score of all the American League 

baseball games for one complete season. Questions had to take the form of a 

single clause without logical connectives, negation or certain complex relations 

such as "most" and "highest". The question was translated into a specification 

list which was a pattern that could be matched against the built-in data-base to 

find the answer. The system's dictionary contained the part of speech and 

"meaning" of most of the words used to ask questions about baseball. There 

was no interaction with the user but it did show that with a limited field of 

discourse natural language questions could be analysed and answered. 

J.L. Darlington (1963) developed a system, in COMIT, that took a 

slightly different approach to the problem. Darlington was interested in 

translating English into symbolic logic and by this means solving complex 

logical problems posed in English by using formal theorem provers. His system 

read in typical elementary problems in logic and translated them into 

statements in symbolic logic whose universal truth was then tested. The system 

was not interactive and the output was restricted to simple built-in phrases or 

single word replies. 
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In the same year R.K. Lindsay (1963) published a paper 

describing a memory structure called inferential memory. A program written in 

IPL-V called SAD-SAM (Sentence Appraiser and Diagrammer, and Semantic 

Ana1ysing Machine) accepted sentences in Basic English (Ogden 1933) from 

which it extracted information concerning kinship. This information was then 

added to one of the family trees the system maintained. Although the program 

was not interactive it was a simple matter to extract family relationships from 

the tree to answer questions. The system was heavily syntax orientated and 

made no use of the semantic information available in the family trees to help it 

to analyse the input. Instead it first tried to produce every possible parse tree 

and then it used the result to build up the family trees. 

A. Newell and R.A. Simon had been interested in computer problem 

solving since their work on the logic theory machine (Newell 1957) and by 1963 

they had developed a program called GPS (General Problem Solver) that tried 

to incorporate their theories on the pyscho1ogy of human thinking into a 

working problem solving program. Although it is not a question-answering 

system it contains many ideas that were later incorporated in the problem-

solving part of many such systems. 

B. Raphael (1968) developed a system called SIR (Semantic 

Information Retrieval), in 1964 that was one of the first truly interactive 

systems. If asked a question it could not answer directly it asked the user 

questions until it could deduce the answer. It accepted as input simple 

sentences in anyone of about twenty fixed formats useful for expressing 

relationships between objects. The relationships included set membership and 

inclusion, left-right position and ownership. They were stored in a semantic 

network in which nodes represented objects and labelled links the relationships. 

Raphael states as his primary interest the ability to store and utilize relational 
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information and for this reason his system ignored the problem of 

analysing general English sentences. 

In the same year D.G. Bobrow (1964) developed a system, called 

STUDENT that accepted and solved algebra problems posed in a restricted 

subset of English. The system was developed to investigate the problem of 

building interactive problem solvers. It could be "programmed" with a problem 

in English and would ask questions until it could solve the problem. The internal 

semantic model was based on one relationship (equality) and five basic 

arithmetic functions (from which others could. be constructed). It was more 

advanced than many other systems in that new transformations could be 

introduced into the running system. At General Electric F. Thompson (1966) 

and J. Craig (1966) developed a question-answering system called DEACON. 

Thompson investigated formal languages as a basis for a question-answering 

base language and Craig developed a working sys tem based on these ideas. 

This system used "rings" as the system's primitive data structure and had 

interpretation rules defined as programs that manipulated these rings. 

Unfortunately the project had to be abandoned through lack of funds. 

Based largely on the ideas and theoretical work of McCarthy and his 

"Advice Taker" and Raphael's SIR, J .R. Slagle (1965) developed a deductive 

question-answering system called DEDUCOM (DEDUctive COMmunicator). It 

could answer a wide variety of questions and its deductive power could be 

increased by telling it more facts. However, the input had to be carefully 

prepared before giving it to DEDUCOM; the facts had to be in the right order, 

some redundant facts were required and some facts had to be carefully worded 

to enable the correct answer to be deduced. 

In 1967 M.R. Quillian completed his thesis on semantic memory. As this 

will be described in Section 1.2.1 it will not be further discussed here. 
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In 1962 R.F. Simmons developed a system, in JOVIAL, called 

SYNTHEX. This formed the basis of the first Protosynthex system which through 

various stages of modification and extension became Protosynthex III (R.M. 

Schwarcz and Simmons, 1970). The original system answered questions using 

a children's encyclopedia. The text of the encyclopedia was stored on magnetic 

tape and analysed whenever a question was asked. The system analysed 

questions by separating function words ("the", "do", "is" etc.) from content 

words (nouns and verbs). The text was indexed on content words and the 

question's content words were used to retrieve all relevant sentences from the 

encyclopedia. The sentences retrieved were then reduced in number by 

comparing them more carefully with the question. The text of the encyclopedia 

was not pre-analysed except for the word index and so the system spent a 

large part of its time analysing the text. By 1970 the Protosynthex III system 

was a sophisticated deductive question-answering system containing a 

formalized data representation language based on triples, a translator to and 

from English and the formal language, and a powerful deductive and inference 

system. 

The system contains many ideas incorporated in PIDGIN. However, it is 

not discussed in detail as it did not form part of the historical development of 

PIDGIN because I did not read a detailed description of Protosynthex until after 

completing the design of PIDGIN. It is thus interesting to note that the 

proposals made for removing some of the' limitations of Protosynthex III are 

those that form the basis of PIDGIN, namely that the deep structure was not 

deep enough and a structure based on Fillmore's case system was suggested; 

"how" and "why" questions could not be answered and a system for 

automatically adding to the data-base was suggested. Also the system ran into 

the combinatorial explosion with large data-bases and to try to solve this, a 

basic unit larger than the triple was suggested together with a "partitioned" 
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data-base. PIDGIN has a deeper deep structure based on Schank's 

which in turn incorporated an improvement of Fillmore's case system. PIDGIN 

does automatically add information to its memory when it answers questions 

and makes plans and this information can be used to answer "how" and "why" 

questions. PIDGIN also incorporates the two suggestions for reducing the 

problem of the combinatorial explosion. 

By 1969 Bursta1l and Ambler (Ambler 1969) had developed a system 

at the Department of Machine Intelligence and Perception, Edinburgh 

University, called QUAC (Question Answerer C). It was a deductive system that 

accepted sentences stating a relation between two objects and between other 

relations. New relations could also be defined in the system. It accepted 

sentences in restricted English and extracted their meaning, and it could also 

generate true sentences about the objects it had been told about. It was 

written to develop the ideas of Raphael (1968) but still suffered from a lack of 

generality. The internal model used by both became too specia1ised though 

Jinich (1971) developed the system in a number of interesting ways. 

Vigor (1969), also at DMIP, developed a system which, although it was 

syntax rather than semantic based did adaptive1y improve its language 

capability by conversation. Initially the program has a dictionary containing 

about 100 words and six relations. From sentences read it increased the size of 

its vocabulary and the range of sentence forms handled. It was originally 

developed from a program called GASP. GASP was a hierarchy of subroutines 

that returned words in certain classes, e.g. noun-abstract. It was extended and 

combined with an English parser called SPUD (Bratley, 196$). SPUD was a 

dependency grammar parser. Words are divided into classes - binding (bound 

or loose), determinacy (determinate or recursive) and negative dependency 

(global or local), and these classes were used to determine where a word could 
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occur in a sentence. The program reads in pieces of text to build up 

its memory structures and then randomly generates English sentences from 

these structures. The system is thus not really interactive. However, it was 

possible to "converse" with it in so far as when the sentence was output the 

user could score the result to modify the system's future behaviour. 

In the last five years, from 1970, the work of Schank and Winograd is 

of most importance to the design of PIDGIN, and both of these are discussed in 

the next section. Schank's work has been associated to some extent with the 

belief systems developed by Colby (1969a, 1969b, 1973). Colby's system was 

originally closely related to J. Weizenbaum's ELIZA (1966) conversational 

system. Both of these systems attempted to carryon a conversation by always 

keeping the initiative that is by always asking questions and never answering 

them. They did this by recognising key words and phrases in the user's replies 

and then they used these to generate related questions. Colby went on to 

extend his system to incorporate his theories about neurotic human behaviour. 

The above computer systems cover the major part of the work that has 

formed the basis of the structure of PIDGIN. However, a wide range of other 

work motivated the overall design philosophy behind PIDGIN. Of this other 

work the most notable is that done in the philosophy of language by L. 

Wittgenstein (1922), W.V.O. Quine (1960), M.J. Cresswell (1973), and R. 

Montague (1969, 1970 and 1973). This work attempts to describe a logical 

notation equivalent to natural language in order to explicate certain difficult 

problems that arise in natural languages. It is of most use in relation to PIDGIN 

in the way that certain semantic problems are brought out and discussed 

because it is important that question-answering systems do not fall into the 

associated traps. However, a logical notation is not a programming language 
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and the solutions proposed are therefore difficult to assimilate 

directly; they can at best act only as guide lines. 

Other related work has been done in the field of the psychology of 

language (Carol1 1964, Slobin 1971, Piaget 1929), problem solving (Po1ya 

1945), human communication (Chapanis 1975), linguistics (Chomsky 1968, 

Lamb 1966), the physiology of the central nervous system (Hebb 1949, 

Geschwind 1973) and computer models of memory and cognition (Hunt 1973, 

Becker 1973). 

1.2.1 Quillian's Semantic Memory 

Quillian (1968) showed how knowledge might be stored in a single 

interconnected network that he called "semantic memory". It enables the 

association between semantically related concepts to be discovered. This 

provides a simple form of inference and is also used by the system to control 

the parsing of English into the network. 

Semantic memory was later incorporated into a system called 

Teachable Language Comprehender (Quillian 1969) that translated a subset of 

English into the semantic memory representation. Teachable Language 

Comprehender, or TLC, regards each input sentence as a specification for 

assembling the parts referred to in the sentence. These parts are called units 

by Quillian and they correspond to what are called concepts in PIDGIN. TLC is 

not a question-answering system; it is a mechanism for assembling new units 

of semantic memory from English sentences. The simple syntax used by TLC 

during its analysis is secondary to the main mechanism for assembling new 

units from old. Thus the analysis is semantically rather than syntactically driven 

and it makes use of extensive implicit information. TLC is historically related to 

TEMPO (Thompson 1966) and SYNTHEX (Simmons 1962). It does not deal with 
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a restricted environment like Bobrow (1964), Raphael (1968) or 

Winograd's (1971) system but attempts to handle general unrestricted English 

sentences. In many respects TLC is similar in scope and purpose to Schank's 

system (1969b). 

The TLC memory consists of facts and form tests. A fact is either a unit 

or a property and a form test is a syntax routine that recognises simple phrases 

and specifies what action to take if found. A unit corresponds to a concept, 

noun phrase or sentence and in semantic memory it consists of a superset 

pointer plus zero or more delimiting properties. This idea of a concept being 

defined by a suitable restriction of a superset concept is also used by PIDGIN. A 

property is an attribute value pair plus zero or more refining properties. Units 

can also be modified by quantifiers and defined as sets of other units. The 

memory is thus one big interconnected network in which each unit is connected 

to its superset unit and, via properties, to modifying units. 

Because the units are interconnected it is often possible to trace a path 

between two units along the superset and property pointers. Two units are 

related if a path exists between them and by considering the properties along 

that path they can be semantically related. So given any two units they can be 

semantically related by looking for a path between them. This is done in TLC by 

a breadth first or parallel search from each of the units. Each unit reached is 

"tagged" and the first common (intersecting) unit found gives the shortest path 

and thus the "closest" semantic link between them. 

To analyse a piece of text each word in the text is associated with a list 

of all of the words' meanings plus possible anaphoric ("backward") references. 

A semantic link is then looked for between each of the meanings of the words 

close together in the text. If a link is found and a form test succeeds then the 

part of memory through which the link passes is copied as part of the new unit 
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being generated. However, if any superset pointers are involved then 

the particular values are copied rather than the superset unit. This corresponds 

to the way that a question and statement may be matched in PIDGIN even 

though one involves concepts that are supersets of those in the other. 

The form tests are introduced to check that the syntax agrees with the 

semantic link found. For example, though "lawyer t s wife" and "wife's lawyer" 

are both connected by the fact that a person may employ a lawyer the form 

tests associated with "employ" only allow the second syntactic arrangement to 

agree with such a semantic link. Each attribute and value in the system is 

associated with a set of form tests which pass or fail possible semantic links by 

checking the syntax (word order, inflexion, agreement and so on between the 

words involved). The form tests are applied one by one until one is found that 

succeeds. If a form test only fails because of intervening words it is 

provisionally succeeded and if the intervening words are all later incorporated in 

the analysis then the form test succeeds. 

When the analysis is complete the original sentence will have been 

transformed into a single unit made up of copies of parts of the memory with 

new units substituted. The new unit created is linked into the complete 

semantic memory and can then be used to form part of a later new unit. TLC 

regards a sentence as being about the subject of the sentence. The subject 

forms the basis of the new unit and determines the superset link of the whole 

new unit. The subject is then modified by properties such as the verb group, 

qualifying clauses, adjectives and so on. Some of these properties are further 

modified, for example an adjective may be modified ("light blue") and a verb 

may be modified by an adverb ("walk quickly"). In PIDGIN the subject and verb 

are regarded as together forming the basis of the structure and each of these 

may be further modified as well as the combination of the two being modified. 
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TLC might generate the following unit from: 

A boy is walking to the park.  

 

Whereas PIDGIN would generate the conception 

A BOY TRANSFER SELF A PLACE THE PARK. 

TLC regards the sentence as being about "boy", in fact as specifying a 

new unit which is its old "boy" unit modified by the property of "walking", which 

is further modified by "in park". PIDGIN regards the sentence as being about 

"boy transferring" (explained later) and it handles the prepositional clause by 

incorporating it in with the particular case system it associates with the act 

TRANSFER. TLC handles the sentence in a very uniform manner. PIDGIN uses a 

more complex representation based upon Schank's work and also upon the 

requirements that a conception is a program statement that can be evaluated 

for its effect upon the system. The advantage of the more complex 

representation is mentioned by Simmons (see last section). 

1.2.2 Schank's Dependency Representation 

Schank developed Hay's conceptual dependency grammar into a 

linguistic theory organized from a computational point of view. Linguistic 

utterances are regarded as devices used by the utterer to guide the formation 

of a conceptual structure in the receiver by modifying and guiding expectations. 

Schank states that there exists a conceptual base into which utterances in 

natural language can be mapped. He proposes a syntax and semantics for such 
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a conceptual base and describes mapping rules for generating 

conceptual structures from language utterances and vice-versa. The conceptual 

base is claimed to be language independent and meaning based, that is to say 

any sentences, in any language, with the same meaning, can be translated into 

the same conceptual structure and any two sentences with a different meaning 

can be translated into different structures. Further, it is claimed that a 

conceptual base containing a small, fixed number of "acts" is sufficient to allow 

the meaning of all the verbs in natural language to be expressed. 

Schank's system will be described starting with his idea of a concept, 

how concepts may be combined and how utterances may be translated into 

such structures. 

a. Concepts 

The basic structure in the conceptual base is called a conceptualization. 

This consists of concepts and certain relations between the concepts. There are 

three types of concept, a nominal, an action, and a modifier. Nominals can be 

thought of by themselves without needing to relate to other concepts, i.e. a 

word that is the realization of a nominal concept tends to produce a picture of 

that real-world object in the hearer's mind. For this reason they are also called 

PPs (Picture Producers), for example, man, book, John and London are all PPs. 

An action is what a PP can be said to be doing. Schank has reduced the 

actions required in the conceptual base to less than twenty. These actions are 

called ACTs and the reduction and rationalization of the ACTs is one of the most 

important features of Schank's system. 

A modifier is a concept that makes no sense without the PP or ACT to 

which it relates. It describes the PP or ACT to which it relates ~d serves to 
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specify an attribute of the nominal or action. Modifiers of nominals 

are called PAs (Picture Aiders) and of actions, AAs (Action Aiders). 

In computer systems based on his theory Schank suggests a number of 

"files" of information that should be kept in order to produce a working system. 

One of these files is called the semantic information file; this contains 

information about which concepts may modify which other concepts. For 

example, the concept "pebble" might be associated with the information that it 

is, by definition, a physical object that is round in shape; usually smooth 

textured and may be modified by the attributes of colour, size and consistency. 

The semantic file is used to check concept combination during translation to 

help disambiguate a sentence and during generation to restrict the 

conceptualizations generated. 

The concepts are language independent meaning units and to explain 

the differences that exist between the meanings of words in different languages 

Schank develops the ideas of under and over-naming. For example, "mare" is 

the over-named variant of "female horse" and "flat rectangular surface raised 

from the ground by four legs" is the under named variant of "table". He 

suggests that similarity can be reduced to equality, between PPs, in so far as 

two PPs refer to the same picture. For example, "mare" and "female horse" are 

the same concept as both refer to the same picture. So, if there are 40 words 

for different types of rice in one language and only one word in another then 

the language independent conceptual base for the first would have 40 named 

concepts for rice while the second would have just one. However, both systems 

would implicitly contain the same range of rice types because this depends not 

upon what concepts are named but on the allowed concept modifiers and the 

allowed concept combinations. Thus if both systems contain the information 

that rice can have texture, and possible textures are smooth, gritty, course and 
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rough, then both contain the implicit concepts "smooth rice", "gritty 

rice" and so on. By including all the possible modifiers of rice possibly hundreds 

of implicit rice concepts are contained in both systems. Most of these will be 

unnamed, for example: 

 "Very small, slightly gritty, soft, yellow rice". 

Of course different particular conceptual bases differ in the range and 

size of their information files but this is the essence of a conversational system, 

i.e., one that learns new concepts and increases its range of conceptual 

knowledge through discourse. 

b. Conceptualizations 

The conceptual categories (PP, ACT, PA and AA) can relate in specified 

ways to each other. These relations are called dependencies and are the 

conceptual analogue of the syntactic dependencies described by Hays and 

others. A dependency relation between two concepts indicates that the 

dependent concept predicts the governing concept. A dependent must have a 

governor. The fundamental base of any conceptualization (except for certain 

special cases) is what is called a two-way dependency link between the main PP 

and ACT. From these two inter-dependent concepts all the other dependent 

concepts of the conceptualization hang. Associated with the act will be a case 

dependency which can be either objective, recipient, directive or instrumental 

and will link one or more PPs to the ACT as conceptual cases. Any PP may be 

modified by a PA or by the relation of containment, location, or possession to 

another PP. 

The conceptual act cases are the basic predictive mechanism available 

to the conceptual processor, and dialogues are often partly concerned with 

filling in the case slots in a conceptualization. 
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Conceptualizations can relate to other conceptualizations by 

dependencies called conceptual relations. The most important of these is 

causality as this is present in the conceptual structure representation of many 

natural language utterances in which causality is not explicitly mentioned. For 

example, verbs such as "kill", "fly", "comfort", and "prevent" in English. 

Schank claims that his conceptualizations, with their small fixed 

number of ACTs, are sufficient to represent adequately the information 

underlying English verbs. Since there are thousands of verbs and only a few 

ACTs this amounts to a tremendous saving, especially when considering the 

inference rules that must be associated with each one. 

c. Natural Language Analysis 

The translation of natural language into conceptualizations, as 

described by Schank, takes place at two levels, the conceptual and the 

sentential. The conceptual level is concerned with creating syntactically well-

formed conceptualizations incorporating all the information from the utterance 

and the sentential level is concerned with the particular syntax rules of the 

natural language being translated. The words of the utterance are used as 

indicators of the top-level structure to be searched for. The translator thus 

combines a bottom-up with a top-down parser and avoids spending a great deal 

of time looking for combinations of syntactic categories that do not exist and 

looking to see if what is wanted at the conceptual level is present at the 

sentential. 

At any point in a translation the system will be working at a number of 

levels of prediction: 
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i)  Syntax: at the conceptual level the rules determine 

what concepts are required and at the sentential level what part of 

speech is allowed at any point. 

ii)  Context: the preceding part of the sentence and the preceding 

sentences limit what is expected at any point in terms of what 

particular verbs or nouns are most likely. A similar prediction can be 

made at the conceptual level. 

iii)  Conversational: because people talk for a reason and because the 

hearer is usually aware of the reason it is possible for prediction to be 

made about large parts of sentences. This fact is usually taken into 

account by the person speaking who will truncate an otherwise lengthy 

utterance. 

iv) World view: as well as information associated with a particular 

conversation, each individual also has knowledge of the situation within 

his entire view of the world. This includes the speaker's knowledge 

about the hearer and vice-versa. This information is used by hearers in 

order to predict what is likely at any point in an utterance and by 

speakers to shape and control their utterance. 

All this information and more should be used by a natural language 

translator to help it predict and thus disambiguate an utterance and also to 

enable it to fill in any information assumed and omitted by the speaker. This is 

done by Schank's translator by making use of the system's memory of past 

conceptualizations and rules about likely intentions and behaviour. 

The translator works by using surface level heuristics to help it find the 

main verb and the subject. From this a verb-ACT dictionary allows the system 
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to set up a rudimentary conceptual structure which can be used to 

direct further analysis. 

d. Conclusions 

Schank's conceptual dependency framework provides a good base for 

holding the meaning, or deep structure, of natural language utterances in a 

computer conversational system. However, Schank's notation was not designed 

to be interpreted and therefore suffers from some of the disadvantages claimed 

by Winograd to exist with such static systems. The setting up of PIDGIN 

attempts to overcome this disadvantage by defining a language plus an 

interpreter so that utterances can be translated into procedures and thus take 

advantage of the benefits of doing this as described by Winograd (1970). 

The main advantage of Schank's scheme is the rationalization of 

conceptual actions and their case dependencies. Reducing the number of 

actions to below twenty allows a conversational system to be able to 

incorporate all the basic actions and their associated 1nference rules in an 

initial system and conversationally extend this base to include more nominal 

concepts and more sentential level verbs and nouns. 

Unfortunately the interpretation of Schank's structures is not well 

defined and there are a number of omissions. PIDGIN attempts to rectify some 

of these faults, first by defining its syntax clearly, then by defining an 

interpreter and lastly by unifying and extending the possible structures. Some 

of the main features of PIDGIN omitted by Schank are the clear treatment of 

structures above the conceptualization (see Abelson, Section 1.2.4), a full 

treatment of relations and properties, the inclusion of arithmetic expressions, a 

pattern matching ability, the consistent treatment of quantifiers including scope 

rules, and the deeper analysis of concepts. 
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Schank's ideas have been implemented as a system called 

MARGIE (Memory, Analysis, Response Generation and Inferences on English, 

Schank 1973c), which includes an ana1yser that translates English into 

conceptualizations, and a generator that translates conceptualizations back into 

English (Goldman, 1975). 

The existence of such an implementation obviates the need for a 

PIDGIN translator implementation because there is a simple syntactic 

correspondence between Schank's conceptualizations and PIDGIN statements. 

Of course, in order to demonstrate those features of PIDGIN not available in 

Schank's system a complete translator for PIDGIN would be an extension of 

Schank's translator but for a large part of the facilities it could be essentially 

the same. However, because of the differences the design of a PIDGIN 

translator has been described in Chapter 4. 
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1.2.3 Winograd's Procedural Deep Structure 

The greatest influence in AI in the last few years has undoubtedly been 

the system designed and developed by T. Winograd. He brought together many 

different techniques and implemented an impressive system that could 

remember information, answer questions "and obey orders concerning a 

simulated "toy world" of co1oured blocks, boxes and pyramids on a table top. 

Winograd's system uses a parser that is based on the ideas developed 

in Halliday's systemic grammar (1970). The parser is a program in a language 

called PROGRAMMER, a language developed by Winograd specifically for the 

task. The parser does not work independently of the rest of the system but can 

call upon any of the other parts to check what it is doing as it goes along. For 

example, when each phrase is formed complex deductions can be performed to 

check that the phrase is correct before continuing. 

Transformational grammar deals with a context-free base grammar 

over which transformation rules operate to produce the actual "surface 

structure". Systemic grammar works with a context-free tree but each node of 

this tree may be associated with "features". These features are, for example, 

"transitive", "question", or "major" and by their use the context dependent 

aspects of natural language can be handled in an economical way. Further, 

there is a high degree of correlation between these features and the semantic 

interpretation of the constituents that exhibit them. The parser extracts the 

features by the use of special routines that check agreement, word endings, 

word order and so on. Context sensitive aspects are handled by special checks, 

for example, the verb phrase routine might climb back along the parsing tree to 

find the main subject in order to check that the subject and verb endings are 

either both singular or both plural. 
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As the parse tree is built up semantic routines are called to 

generate the PLANNER program that is equivalent to the parse tree produced. 

PLANNER is a programming language developed by C. Hewitt (1971, 1972) to 

enable goal-directed theorem-proving programs to be simply written. For 

example, if the noun group "a red cube" has been parsed the tree formed is 

passed to the noun group semantic routine to produce the corresponding Micro-

Planner (the implementation of PLANNER used by Winograd, see G.J. Sussman 

1970) statements: 

(THGOAL (#IS $?Xl #BLOCK)) 

(#EQDIM $?Xl) 

(THGOAL (#COLOR $?Xl #RED)) 

The above program would fail of there were no blocks of equal 

dimensions and coloured red, otherwise it would succeed with the variable Xl 

bound to the first red cube found in the data-base. The above piece of program 

would form part of the complete procedure generated for a sentence. For 

example, the question "How many red cubes are there" could use the above 

program repeatedly to find every red cube and at the same time keep a count 

of the number found. The imperative "Put a red cube in the box" could use the 

same program to find a red cube and then it could be moved into the box by a 

further piece of PLANNER program. The assertion "I like red cubes" could 

generate the theorem 

(#LlKE $?X) 

with a body which is the same as the above program. This would fail if 

the object given to the theorem were not a red cube (e.g. (#LlKE :PYRAMID)), 

otherwise it would succeed. 

Winograd has taken the sophisticated data-base theorem-proving 

programming language PLANNER as the structure in which the meaning of a 

sentence is represented. This structure is not a static tree structure but an 
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actual PLANNER program. By representing meanings as procedures 

Winograd argues that greater power and flexibility is obtained than with any 

static representation such as that of Schank. However, the advantage of 

Schank's representation is that it was designed around the conceptual base of 

natural language whereas PLANNER was designed as a theorem-proving 

language. It was to try to combine the advantages of both these systems that 

PIDGIN was developed. 

Winograd developed the powerful parsing language, PROGRAMMAR, 

based on systemic grammar theory, in order to write a parser that could 

produce a parse tree for any meaningful English sentence in the vocabulary 

used. This parse tree then had to be translated into a PLANNER procedure. By 

designing the meaning structure to incorporate the underlying rules of natural 

language the parser can be driven by the syntax of the meaning structure and, 

further, this meaning structure can be built up as the parsing proceeds, word 

by word. 

Most question-answering systems, including Winograd's, generate 

output by a form of "slot-and-fi11er" technique. The system contains various 

skeleton sentences into which the answer or query is put. Winograd's system 

uses a number of special rules to improve the form of the output by the use of 

pronouns and word endings. Each type of question has a model output 

statement into which the answer is put. There are also a number of built-in 

error messages to reject questions that cannot be answered, and ambiguous 

and other ill-formed sentences. The advantage of Schank's scheme is that 

every possible legal conceptualization can be mapped into an English sentence, 

whereas in Winograd's system there is no attempt to map PLANNER back into 

English. Schank discusses how random sentences may be generated within his 

system and he goes on to say that to generate conversation it is necessary to 
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introduce motivation into the choices made. However, he does not 

describe how this might be done. 

PIDGIN generates a conception as an answer to a question, and this 

conception is then mapped back into English. Consider an example to compare 

Winograd's use of PLANNER with PIDGIN. The question:- 

What is in the box? 

will be parsed by Winograd's system to form a parse tree which will 

then be translated into a PLANNER procedure that will contain a statement of 

the form: 

(THGOAL (#IN :BOX $?Xl)) 

The object found will then be slotted into a standard reply suitably 

modified to distinguish it from all the other objects. If no object was found then 

a suitable "error" message would be output. 

PIDGIN would analyse the question into: 

AN OBJECT <IN BOX> ? 

and this question would then be evaluated to return say: 

PYRAMID <IN BOX> 

This then forms the basis of the reply. 

PIDGIN can be described by analogy with certain features of PLANNER. 

In PLANNER there are a large number of primitives that manipulate arbitrary 

patterns stored in a data-base. One of these primitives is "GOAL" (or "THGOAL" 

in Micro-Planner). This primitive will succeed if the pattern which is its 

argument matches a pattern in the data-base or if the pattern matches a 

consequent theorem and then that theorem succeeds. This is the essence of the 

evaluation of PIDGIN. Every PIDGIN statement either succeeds or fails when it 



 
40 

is evaluated. If it matches a statement directly or if it matches an IF-

rule that succeeds then it succeeds; otherwise it fails. PIDGIN statements can 

be conjoined or disjoined with other statements to form programs in which the 

flow of control is determined by the success or failure of its individual 

statements. A complete description of the evaluation of a PIDGIN statement is 

given later but the above summary serves as a useful guide to the overall flow 

of control. 

In conclusion, Winograd's system is a PROGRAMMAR program that 

translates English sentences into PLANNER procedures that manipulate a data-

base which is a description of the simulated toy-world. A PIDGIN conversational 

system is a PIDGIN program that translates English sentences into PIDGIN 

statements that manipulate other PIDGIN statements that together form a 

description of the world. 

1.2.4 Abelson's Belief Structures 

Whereas Schank describes the details of the structure of conceptual 

dependencies, Abelson considers the relationships between them. Abelson is 

interested in how conceptualizations can be put together to form larger 

coherent systems. Schemes such as Schank's and Winograd's are sometimes 

called "knowledge systems" because there can be little argument over the truth 

or falsity of the facts stored within the system. However, when relationships 

between conceptualizations, such as purpose and cause, are considered, 

disagreement may arise. Such systems are therefore called "belief systems". 

Abelson distinguishes between three types of conceptualization, which 

he calls "atoms", i.e. action atoms, state atoms, and purpose atoms. He 

describes how these may be put together to form "molecules" and how these 
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can be assembled into "plans". Plans of two individuals can be 

related as "themes" and these can be built up into complete ideologies or 

"scripts". 

For the purpose of building a problem-solving system the complete 

range of Abelson's work is not required. However, his technique for assembling 

atoms into plans is directly applicable to building a chess playing program and 

his higher level techniques for building themes and scripts could be applied to 

constructing a chess program that played with purpose to achieve certain states 

by particular actions and which could play with say aggression or care (themes) 

or possibly in a way that was related to the opponent's style. It must be 

remembered that although the chess problem was mentioned above and this 

particular problem is considered in more detail later it is not being studied as m 

end in itself but only in so far as it is a well defined problem that is difficult to 

solve. This means that although the ideas presented below are later applied to 

a particular chess endgame problem they were added to PIDGIN with more 

general aims in view. 

A brief summary of Abelson's terms and techniques will be given and 

then related to the specific requirements of a PDIGIN chess system in order to 

show how they may be used in a practical system. Abelson bases his work on 

Schank's Conceptual Dependency Analysis with minor changes to the notation 

for the sake of convenience within Abelson's overall system. Abelson calls 

conceptualizations, "atoms" and distinguishes three types, A (action) atoms, 

which are Schank's PP-ACT conceptualizations, S (state) atoms which are 

Schank's attributive PP-PP or PP-PA conceptualizations and P (purpose) atoms 

which have the Schank representation: 
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Actor <=> want 

   

 Actor <=> Poss (X) 

These atoms can be assembled into plans. The simplest type of 'plan is 

called a molecule and it has the form: 

P - A - S 

where the S-atom is the state connected to the "want" of the P-atom, 

the A-atom is causally connected to the S-atom and the actor in the A-atom is 

an agent of the actor in the P-atom. A molecule captures the idea of an action 

undertaken in order to attain a goal desired by the sponsor of the action. 

With each type of actor-action conceptualization of the "TRANS" class 

(as described by Schank, 1973b) Abelson lists those states that must hold 

before or while the action is performed. For example, before A can take X from 

B using Y three states must hold, B must possess X, A must have access to Y, 

and A, X and Y must be in close proximity. These conditions can be simplified, 

for example, if the instrument Y is A's hand and the object X is taken from a 

place rather than a person then the only condition is that A and X are in close 

proximity. 

The simple P-A-S molecule can be extended to form a "serial plan" (or 

"chain") by interposing alternating A and S atoms following the initial P-atom. 

Then the final S-atom must be the "want" state of the P-atom, each A-atom 

must be causally bonded to the following S-atom, the actor in each A-atom 

must be either the actor in the initial P-atom or the agent of the actor in the 

preceding A-atom, and each S-atom must "enable" the following A-atom. 

Networks may be built up to form complex plans because an action may require 

a number of states before it is enabled and one state may enable a number of 
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actions. Abelson distinguishes fourteen types of linkage between 

atoms in a network:  

i)   P --- A Purposive action The action A serves the 
purpose P. 

ii)  A --- S Casual linkage Action A causes the outcome 

S intended by the actor. 
iii) S --- A Enablement The state S enables action A. 
iv) 

        

Multiple enablers All of states S1...Sn are 

required to enable action A. 

v) 

       

Multiple enablement State S enables all of the 
act1ons A1...An. 

vi) 

       

Concurrent action Actor with purpose P 
concurrently undertakes 
actions A1...An. 

vii) 

       

Multiple 
consequences 

Action A causes each of the 
intended consequences 

S1...Sn 

viii) 

        

Alternative causation S is caused by either A1 or 

A2...A 

ix)   A -x- S Casual blockage Action A prevents state S 
x)    S -x- A Vitiation State S inhibits performance 

of A 

xi)   A --- S Unavoidable 
consequence 

Action A causes state S, not 
intended by the actor 

xii)  A -x- S Unavoidable blockage Action A unwittingly prevents 

outcome S 
xiii) A --- S1 
 S2 

Positive gating State S2 enables action A to 
lead to state S1 

xiv) A -x- S1 
 S2 

Negative gating State S2 prevents A from 
leading to state S1 

All of the linkages can be combined to form a network, with the 

additional restriction that all networks must begin with a single leftmost P-atom 

and end with one or more rightmost S-atoms. 

If the atoms correspond to statements in a normal programming 

language then the above linkages correspond to the control structure. It is 
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interesting to compare a network with a PLANNER program to 

contrast the two ways in which plans are constructed. A comparison highlights 

the view expressed in this thesis that the program structure of a conversational 

system should reflect the structure found in natural language rather than that 

taken from programming languages. For this reason the control structure of 

PIDGIN is based on a scheme similar to the above description. 

In PIDGIN a state can be specified as desired and if it is connected by 

enabled actions to the current situation then a plan can be constructed that 

consists of those actions. Every action is associated with a set of enabling 

states and if all these hold then when the action is performed a new set of 

states will arise which will enable further actions to be performed until the 

desired state holds. 

Abelson goes on to consider how two plans can be combined into a 

theme. A theme is a relationship between the plans of two actors. One actor is 

either the agent, goal object or interested party of the other actor's plan. Each 

actor has an "attitude" (positive of negative) towards the other and each is able 

to interfere with the other's plan in a set number of ways. Depending on 

whether the actor's relationship: is positive or negative a theme will be one of 

admiration, devotion, cooperation, alienation, betrayal, rebellion, antagonism, 

oppression or conflict, plus a number of other related themes. 

Themes can be combined to form theme sequences or scripts. A script 

is a network of themes with linkages analogous to those between atoms in a 

plan. For example, the "romantic triangle" script runs: 
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And the rescue script might run: 

 

Abelson gives the script of the current Cold War (detente disregarded) 

based on a hypothesised belief system or ideology of what he calls a Cold 

Warrior. 

PIDGIN has not been extended to contain primitives that correspond to 

themes and scripts as from the point of view of the chess problem these are 

simple and fixed. In chess the theme is conflict leading eventually to 

oppression. The script is simple; for player A it would be: 

Schess  Conflict (A, B)  Oppression (A, B) 

The chess ideology is simple and brutal. However, it might be 

interesting to postulate an ideology for say, the white king, involving themes 

corresponding to the interplay of all the pieces. What is interesting about chess 

is the nature of the theme of Conflict. Abelson diagrams this as: 

 



 
46 

It might be worth while to consider the chess problem from 

this point of view. Each side can carry out actions that either damage the 

position of the other side or prevent the other side from doing damage, both 

from the point of view of the desired end state. Such a computer program 

would need to consider its own plans, to hypothesise about its opponent's plans 

and to consider how they interact. 
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CHAPTER 2 PIDGIN - A REALISATION LANGUAGE 

2.1 The PIDGIN Language 

PIDGIN is a programming language into which natural languages, such 

as English, may be easily translated. Thus corresponding to every PIDGIN 

program there is some sequence of English sentences. The unit of a PIDGIN 

program is called a conception and this corresponds approximately to 'a simple 

English sentence. Conceptions can be combined to form what are called 

thoughts, as sentences can be combined in English to form complex sentences, 

rules, suggestions and so on. There are eight types of thought in PIDGIN, each 

associated with a different conception connector. For example, the following 

PIDGIN thought uses the IF connector to join a single conception to a rule 

consisting of two conceptions joined by conjunction: 

A WOMAN <AUNT A PERSON1> IF 

  THE WOMAN <SISTER A PERSON2> AND  

  THE PERSON2 <PARENT THE PERSON1>. 

This corresponds to the English definition: 

A woman is the aunt of somebody if she is the sister of another 

person who is the parent of the first person. 

The above PIDGIN thought is given in a language called Input PIDGIN. 

This is assembled by a program called the PIDGIN assembler into the Strict 

PIDGIN language. Input PIDGIN is suitable for human consumption and Strict 

PIDGIN for machine interpretation, for example, the above thought would be 

assembled into the Strict PIDGIN thought: 

<IF [1 LTS 50 TRUE <EQUAL 123> MANNER PERIOD MOD]  

 <BE <WOMAN <EQUAL 1> SUBJA <AUNT <PERSON1 

<EQUAL 1> ATTR SPEC>>> 

  [2 LTS 50 TRUE <EQUAL 123> MANNER PERIOD MOD]> 

 <BE <WOMAN <EQUAL 1> SUBJA <SISTER <PERSON2 

<EQUAL 1> ATTR SPEC>>>  

  [3 LTS 50 TRUE <EQUAL 123> MANNER PERIOD MOD] > 

 <BE <PERSON2 <EQUAL 1> SUBJA <PARENT PERSON1 

<EQUAL 1> ATTR SPEC>>> 
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  [4 LTS 50 TRUE <EQUAL 123> MANNER 

PERIOD MOD] > 

  

> 

If the interpretation rules given later are referred to it can be seen that 

this PIDGIN thought will result in the function IF being applied to its three 

arguments. The IF function will store the rule in memory so that it can be used 

later to make inferences. For example, consider the three Input PIDGIN 

conceptions: 

MARY <SISTER JOHN>. JOHN <PARENT BILL>. 

MARY <AUNT BILL>? 

The first two assertions would be stored in the memory in their 

expanded Strict PIDGIN form. The question, however, must extract information 

from the memory. This is done by matching the question with all the 

conceptions stored in memory. If one matches then that is the answer, but if 

none match then the system will try all matching IF thoughts in order to try to 

answer the question using deduction. If the first conception of some IF thought 

matches, as it does in this case, then the other conceptions making up the IF 

thought are treated as questions. If these can be matched (possibly involving 

further IF thoughts) then the original question succeeds and is answered, 

otherwise the answer cannot be inferred from the memory. 

It can be seen from this example that there are two ways the PIDGIN 

system treats conceptions and thoughts as they are input. If it is an assertion 

then it is added to the memory and if it is a question then it is matched against 

the memory to retrieve information from it. Together with commands (which 

are like assertions but may add more than one conception to the memory 

according to matching ENABLE and PRODUCE thoughts) these form the basis of 

all PIDGIN. It remains necessary to describe the exact syntax of both Input and 
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Strict PIDGIN, the matching algorithm, the general structure of the 

system, and implementation questions such as the structure of memory. 

2.1.1 The Strict PIDGIN Language 

A description of the syntax of Strict PIDGIN will be given next, and it is 

convenient to describe first the foundation of the complete PIDGIN system - the 

interpreter. The basic interpreter is called ABC (Associative Backtrack 

Computer) and the language over which ABC is defined is called ABL 

(Associative Backtrack Language). Each Strict PIDGIN thought is a legal ABL 

expression, so each Strict PIDGIN thought can be interpreted according to the 

rules of ABC. The complete PIDGIN interpreter is ABC plus a number of ABL 

expressions to be described later. The syntax in this section is a type of 

Backus-Naur notation with the following features: 

i)  The string "::=" can be read as "is defined as". 

ii)  The vertical bar can be read as "or". 

iii)  Lower case letters and the hyphen are used to name syntax 

categories. Each category is defined once by placing it on the left-hand 

side of the "::=" string with its legal replacements on the right-hand 

side. 

iv) Upper case letters, digits and punctuation characters are terminal 

symbols. 

v)  If a defined syntax category (say, X) is used terminated by the 

letter "s" then this means that is may occur one or more times (i.e. Xs 

::= X  X Xs ). 
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vi) If a defined syntax category (say, X) is used terminated 

by the string "-choice" then this means that it may occur between band 

or class brackets (see syntax). That is: 

X-choice ::= X  (X-choices)  X-choices  [X-choices]  X-choices 

vii) A string in quotes is used to describe the category in English. 

First the ABC language ABL is defined and the interpretation rules 

given. This is followed by the syntax of Strict PIDGIN together with some notes 

justifying the structures described by the syntax by reference to the way the 

system is used. It should be noted that the set of strings defined by the PIDGIN 

syntax rules are a strict subset of the set of strings defined by the ABL syntax 

rules. Thus the interpretation rules given for ABL also apply to each legal 

PIDGIN string.     

2.1.1A Associative Backtrack Computer 

The following sixteen syntax categories define a language called ABL 

(Associative Backtrack Language). After this the evaluation of each legal ABL 

string is given. 

expression ::= application  band  class  concept  number 

application ::= <expressions> 

band ::= ordered-band  unordered-band 

class ::= ordered-class  unordered-class 

concept : : = name  name subscript 

number ::= integer  real  negator number 

 

ordered-band ::= [expressions] 

unordered-band ::= expressions 

ordered-class ::= (expressions) 

unordered-class::= expressions 

 

name ::= "one or more letters" 

subscript ::= integer 

integer ::= "one or more digits" 

real ::= integer point integer 

point ::= "a full stop" 

negator : : = "a hyphen" 
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To define the evaluation of an ABL expression the evaluation 

of each of the five types of expression is described separately. In general when 

an expression is evaluated it either returns a value, and is said to succeed, or 

else it fails. 

i)  Concept. In order to describe how a concept is evaluated it is 

necessary to describe some other features of ABC first. Every pair of 

concepts is associated with an expression, which is initially taken to be 

the first concept of the pair. The pair is ordered, that is, the pair A/B 

need not be associated with the same expression as the pair B/A. The 

second concept of the pair is called the "aspect" and the expression is 

called that aspect of the first concept. For example, if the pair 

PERSON/SUB is associated with MALE then MALE is called the SUB 

aspect of PERSON. The REF aspect of a concept is also called the 

reference of that concept. The aspect of a subscripted concept is always 

equal to the same aspect of the unsubscripted concept except in the 

case of the REF aspect. That is, the X aspect of A equals the X aspect of 

A1, A2, A3 and so on, but the REF aspect of A may be different from 

that of A1, which may differ from that of A2 and so on. For example, 

the SUB aspect of PERSON3 is the same as the SUB aspect of PERSON 

but their references may be different. 

  A concept is evaluated by evaluating its reference, if this is equal 

to the concept itself then evaluation fails. 

  The association of an expression with a concept pair may be 

"frozen" so that it can no longer be altered by the PIDGIN processes of 

matching and binding described later. In PIDGIN the only association 

that is frozen is that with the concept ENTITY, if this is frozen as the 
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reference of a concept then that concept is called an entity 

concept. Any other concept is called a group concept. 

  During the evaluation of ABC if the association of an expression 

with a concept pair is altered then the previous association is 

remembered until the expression currently being evaluated either 

succeeds or fails. If it fails then the previous association is reinstated, 

this is called automatically undoing a side-effect after failure. 

  The set of all the associations of expressions with concept pairs is 

called the data-base. During evaluation the data-base is continually 

changing and it forms a context for resolving ambiguities and anaphoric 

references during natural language translation, as well as a guide to 

control memory searching and a "local variable" mechanism when 

making deductions. The memory of PIDGIN is a subset of the data-base 

consisting of those statements stored by the running system. The ABL 

programs making up the PIDGIN system determine the particular way 

the memory is "partitioned" into the data-base and this is described in 

more detail later. 

ii)  Application. An application is an ordered sequence of one or more 

expressions, the first of which is called the function and the others of 

which are called the arguments. To evaluate an application (i.e. apply a 

function to its arguments) all the arguments are formed into an ordered 

band (any argument that is itself an application being evaluated first). 

  This ordered band is then made the reference of the concept 

ARGS. The function is then examined; if it is one of the 42 ABL 

primitives listed in Appendix 1 then the action taken is as described in 

Appendix 1 (note that if its ARCS aspect is QUOTE then the arguments 
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are not evaluated first as described above). If it is not a 

primitive then it is evaluated according to the rules given in these five 

pieces. In particular if the function is a concept then its reference is 

evaluated. The value of the application is the value obtained by 

applying the function to its arguments. 

iii)  Band. A band is either an ordered or an unordered conjunction of 

all the expressions it contains. It is evaluated by evaluating each 

expression until all succeed or until one fails. If an expression fails then 

the evaluation of the band terminates immediately and any side-effects 

are automatically undone and the complete band fails, otherwise the 

band succeeds and the value returned is the value of the last 

expression evaluated. If the band is unordered then the order of 

evaluation of its expressions is not defined. 

iv)  Class. A class is either an ordered or an unordered disjunction of 

all the expressions it contains. It is evaluated by evaluating each 

expression until one succeeds or all fail. If an expression fails then any 

side-effects are automatically undone. If all the expressions fail then 

the complete class fails. If an expression succeeds then the evaluation 

terminates immediately, the side-effects of any other expression in the 

class being evaluated are undone and the class succeeds, returning the 

value of the successful expression. If the class is unordered then the 

order of evaluation of its expressions is not defined. 

v)  Number. The evaluation of a number always fails. 
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2.1.1B Strict PIDGIN Syntax 

A Strict PIDGIN program is a sequence of statements the syntax of 

which is a particular restriction of the more general syntax of ABL. The syntax 

of ABL allows any number of bracketed expressions or concepts or numbers to 

be enclosed in anyone of five types of bracket. The syntax of PIDGIN allows 

only specific numbers and types of concept and bracketing to make up a 

program. As the ABC interpreter is defined over all ABL expressions it follows 

from the above that it is defined over any PIDGIN program. 

A PIDGIN thought is a conception connected to a choice of conceptions 

by one of the eight connectors. A conception consists of one of the ten acts plus 

one to four actors plus a modifier. Before giving the syntax of thoughts and 

conceptions the following diagram of a simplified version of the syntax may 

make their structure clearer: 

 

program ::= statements 

statement ::= thought  conception 

thought ::= <SUGGEST modifier state-choice state> 

  <ENABLE modifier state-choice action> 

  <PRODUCE modifier action state-choice> 

  <CAUSE modifier action actions> 

  <THEREFORE modifier 
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  <CAUSE modifier action actions> action> 

  <THROUGH modifier action action-choice> 

  <WHILE action-choice action-choice> 

  <IF modifier conception rule> 

rule ::= conception-choice 

The following two categories do not form part of the syntax but are 

given here because they are referred to later: 

plan ::- action-choice 

scheme ::= state-choice 

The above syntax defines the connections allowed between the 

conceptions whose syntax is described next. Conceptions correspond 

approximately to simple English sentences and the above syntax defines all the 

ways that these may be put together in PIDGIN. The function part of a thought 

application is called a connector (see Division 2.3A). 

conception ::= state  action 

state ::= <state-act actor modifier> 

action ::= <action-act kernel modifier> 

kernel ::= subject object 

   subject object source destination 

subject ::= actor-choice 

object ::= actor-choice  thought  pattern 

source ::= actor 

destination ::= actor 

 

actor ::= <nominal quantifier [attributes] 

     [specifiers] > 

nominal ::= entity-concept  group-concept 

entity-concept ::= SELF 

group-concept ::= THING 

 

state-act ::= BE 

action-act ::= BECOME  COGITATE  DO  IDENTIFY  MOVE  PASS 

    PERCEIVE  TRANSFER  TRANSMIT 

    TRANS  TROW 

 

quantifier ::= <comparator quantity>  ALL 

comparator ::= EQUAL  ABOUT  MORE  LESS 

quantity ::= <operator quantity quantity>  number 

    variable  actor  ALL 

operator ::= ADD  SUB  MULT  DIV 

variable ::= NUMBER 

attribute ::= ATTRIBUTE 

specifier ::= <relation actors>  <<relation relmod> actors> 

relation ::= SUB  EQUIV  INVERSE  OPPOSITE  POSS  HAS 

   FEEL  VALUE  PRIORITY  CLASS  space-relation 

space-relation ::= LOC  NEAR  ABOVE  BELOW  BACK 

   FRONT  LEFT  RIGHT  BETWEEN  DIST 
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relmod :: = MAX  MIN  MEAN 

 

modifier ::= [index author priority truth time manner 

  period [mods]] 

index ::= integer 

author ::= entity-concept 

priority ::= integer 

truth ::= NOT  TRUE  POSSIBLE  DEFN 

time ::= quantifier 

manner ::= CAN  INTEND  ACCIDENT  DISPOSED 

period ::= START  WAX  CONTINUING  WANE  STOP  EVENT 

   REPEAT 

mod ::= <DEGREE actor>  <LOC actor> 

   <INTERVAL actor> 

 

This completes the syntax of Strict PIDGIN except for the description of 

the category "pattern". It can be seen that a number of features of PIDGIN are 

taken from Schank's notation for conceptual deep structures. For example, 

consider: 

Schank    modifier 
          

    subject <=> act  object 
        

    subjmod  objmod 

 

PIDGIN <ACT <SUBJECT SUBMOD> 

    <OBJECT OBJMOD> MODIFIER> 

The equivalence is only approximate because PIDGIN contains features 

not present in Schank's system. The differences between the systems arise 

from the fact that Schank's notation is a static picture of the deep structure 

whereas PIDGIN is a programming language. Thus the justification for Schank's 

pictures lies with the reader because a precise interpretation is never given. 

The final part of the syntax describes a structure that enables general pattern 

matching problems to be handled in PIDGIN (see IDENTIFY, Part 2.3B5). 

pattern ::= lattice  grid  line  actor 

lattice ::= <grids> 

grid ::= <lines> 

line ::= <actors> 

match-degree ::= MATCH  SIMILAR  MIRROR 

match-type ::= SAME  RSUB  VAGUE  TYPE  LIKE 
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The ability to set up and compare patterns of actors is very 

useful for many problems, for example, the chess endgame problem considered 

later. The complete syntax of Strict PIDGIN has now been described. 

2.1.2 The Input PIDGIN Language 

The syntax described in the last section would be tedious to use as an 

input language because of the bracketing, the large number of modifiers 

required, the dissimilarity with English and the occasional necessity to repeat 

conceptions. For these reasons an input language is defined below to reduce 

these problems yet maintain a clear correspondence with the Strict language. 

If the Strict language is imagined as the machine-code of a PIDGIN 

machine then the input language is like an assembler language. It is in one-to-

one correspondence to Strict PIDGIN, is simple to translate and is user 

oriented. 

The syntax below modifies the syntax of Strict PIDGIN. If a category is 

not redefined it retains the definition given in the last section. Curly brackets 

are used to enclose optional items. 

 i)  Comments. These are expressly forbidden. Any information that 

would go in a comment should be given to the PIDGIN system. In some 

ways statements in PIDGIN are like comments in most programming 

languages. 

ii)  Labels. Any conception or thought can be labelled by following it 

with a colon and the label name. The conception or thought is made the 

reference of the label and if the label is used later it will be replaced by 

its reference. 

iii)  Program. 
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statement ::= thought terminator  conception terminator 

thought ::= rule {modifier} connector thought  rule 

connector ::= SUGGEST  ENABLE  PRODUCE  CAUSE 

    THEREFORE  THROUGH  WHILE  IF 

rule ::= conception  conception choices 

choice: : = AND conception {,}  OR conception {,} 

terminator ::= . ? ! 

If a comma is used all the conceptions to the left of the comma are 

bracketed together, otherwise bracketing is from the right, e.g. : 

A AND B OR C AND D. gives [A (B [C D] )] 

A AND B, OR C AND D. gives([A B] [C D] ) 

A AND B, OR C, AND D. gives[([A D] C) D] 

iv) Conception. 

conception ::= subject {modifier}{act {object 

   {source destination}}} 

object ::= actor-choice  <thought>  *pattern 

act ::= state-act I action-act 

If the act is omitted then the state-act (BE) is assumed. 

v) Actor. 

actor ::= {quantifier}{[attributes]} concept 

    {specifiers} 

quantifier ::= number  A  AN  THE  NO  SOME  MOST  ALL 

    EVERY  ANY  <comparator quantity> 

    = variable 

where: 

NO is translated as <EQUAL 0> 

THE, A, AN is translated as <EQUAL 1> 

SOME is translated as <MORE 0> 

MOST is translated as <MORE <DIV ALL 2> 

EVERY, ANY is translated as ALL 

If the actor starts with a quantifier it is assumed to be a group concept, 

otherwise it is assumed to be an entity concept. 

The entity concept SELF has a special meaning. If it is in the subject 

position then it is taken as referring to the PIDGIN system and the conception 

is treated as a command; otherwise it refers to the complete subject of that 
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conception. It must always be used where it can be used. Its use is 

explained in Section 2.4.1. 

vi) Modifier 

modifier ::= [mods] 

mod ::= POSSIBLE  DEFN  NOT  CAN  INTEND 

   ACCIDENT  DISPOSED  START  WAX 

   CONTINUING  WANE  STOP  REPEAT  EVENT 

   <DEGREE actor>  <LOC actor> 

   <TIME actor>  <INTERVAL actor> 

The index, author and priority cannot be specified and are added 

automatically by the input assembler. If the mod POSSIBLE is used the priority 

is set to 20; if DEFN is used it is set to 10 greater than the user's current 

priority; otherwise the user's priority ~s used. The author is made the current 

user, and the index is incremented by one for every new conception read. If the 

conception is terminated by"?" then the assembler sets up the modifier: 

[index author priority TRUTH TIME MANNER PERIOD MOD] 

where TRUTH matches any truth, TIME any time and so on. However, if 

any modifier is stated explicitly it replaces the default value. It will be seen 

later (Division 2.4.2C) that the index, author and priority are ignored when 

matching. 

If the conception is terminated by"." then the default value . for truth is 

TRUE and for time is NOW. The following abbreviations are accepted in the 

modifier: 

PAST is translated as <LESS t> 

FUTURE is translated as <MORE t> 

NOW is translated as <EQUAL t> 

where "t" is the current time as maintained by the PIDGIN system. 
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vii) Patterns. A pattern may not contain more than one 

occurrence of any entity concept. On input they must be preceded by 

the character "*". 

viii) ABL. To input a structure not complying with the syntax of Input 

PIDGIN it should be preceded by the character "$". The structure 

following the "$" must conform to the syntax of ABL and it will be taken 

as satisfying the PIDGIN structure currently being searched for, either a 

thought or an actor. From the above descriptions of Input and Strict 

PIDGIN it should be clear how one is translated into the other. An 

example is given at the start of this chapter. 

All the syntax of both Strict and Input PIDGIN has now been covered. It 

is next necessary to consider how PIDGIN statements may be used to represent 

conceptual knowledge and thus enable assertions and rules to be stored from 

which questions can be answered. This will be done by first considering the 

overall structure of the working system. But first a few examples are given to 

suggest how the PIDGIN statement corresponds to the English sentence. 

2.1.3 Examples of PIDGIN 

The following examples give an English sentence with the 

corresponding Input PIDGIN deep structure plus a possible English paraphrase 

of the deep structure. The way in which the translation is performed is 

described in Chapter 4. 

i)  John walked to the park. 

 JOHN [PAST] TRANSFER SELF A PLACE THE PARK 

  THROUGH JOHN [PAST REPEAT] MOVE 2 LEG 

   A PLACE1 A PLACE2 . 

John transferred himself from some place to the park by moving his 

two legs from one place to another. 
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ii)  Bill hit John. 

BILL TRANSFER AN OBJECT A PLACE JOHN. 

Bill transferred an object from somewhere to John. 

iii)  Will John give his wife an expensive present on her birthday? 

JOHN [<TIME A BIRTHDAY <BELONG A PERSON <WIFE JOHN>>>] 

 PASS AN [EXPENSIVE] PRESENT SELF A PERSON 

  <WIFE JOHN>? 

Will John pass possession of an expensive present from himself to 

a person who is his wife at the time equal to a moment which is the 

birthday of the person who is the wife of John? 

iv) Since smoking can kill, I stopped. 

A PERSON TRANSFER SOME SMOKE A SMOKEABLE LUNG 

[CAN] CAUSE THE PERSON BECOME [DEAD] SELF, 

 THEREFORE SELF [STOP PAST] TRANSFER 

  SOME SMOKE A SMOKEABLE LUNG. 

A person who transfers some smoke from a smokeable object to 

their lung can cause that person to become dead, therefore I 

stopped transferring smoke from smokeable objects to my lungs. 

v)  John grows roses. 

JOHN [DISPOSED] DO AN ACTION 

 [INTEND] CAUSE SOME ROSE <HEIGHT =N INCH> BECOME 

  SELF <HEIGHT <MORE N> INCH>. 

John is disposed to carry out an action that intentionally causes at 

least one rose of height n inches to become more than n inches tall. 

iv) Yesterday, the boy in that chair stopped the girl by the window 

going to the park with the dangerous swings with John. 

BOY <LOC CHAIR> [PAST] DO AN ACTION 

 [INTEND <TIME YESTERDAY> ] CAUSE 

 (JOHN GIRL <LOC WINDOW>] [STOP] TRANSFER 

  SELF A PLACE PARK <CONT SOME 

   [DANGEROUS] SWING>. 

The boy located at the chair did an action in the past that yesterday 

intentionally caused the girl located at the window and John to 

stop the event of transferring themselves from somewhere to the 

location of a park containing at least one dangerous swing. 

The above translations are at best very approximate because the 

translation actually performed by the PIDGIN system depends on the 

vocabulary of concepts and the entries in the translator's dictionary, and these 
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change as the system is used. For example, in case (i) "walk" could 

have been translated simply as the first conception (in which case the 

information that the method of transfer involved feet would have been lost). In 

the second example the tense of the verb is ignored, as it might be in "a simple 

PIDGIN system. In the fifth example the actions involved in growing roses are 

not specified and the intended result is simplified to merely increasing their 

height. All of these limitations in the translation can be improved by giving the 

system more information about the meaning of the English words. 
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2.2 The PIDGIN System 

2.2.1 The Components of the System 

The best way to describe the complete system is to first distinguish 

between its major components, then to consider each component in detail and 

finally to show how they work together to 

 produce a conversational problem-solving system. 

The following components may be distinguished: 

A. Associative Backtrack Computer 

 (i) Interpreter (42 primitives)  

  (ii) Assembler (Meta-ABL to Strict-ABL translator) 

B. PIDGIN 

 (i) Interpreter (10 acts and 8 connectors)  

  (ii) Assembler (Input to Strict PIDGIN translator)  

  (iii) Disassembler (Strict to Input PIDGIN translator)  

  (iv) Resolver (matcher, binder and deduction mechanism) 

C. Translator 

 (i) Analyser (English to PIDGIN)  

  (ii) Synthesiser (PIDGIN to English) 

D. Knowledge Base 

 (i) Primary knowledge  

  (ii) General knowledge  

  (iii) Specialist knowledge 
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2.2.1A Associative Backtrack Computer 

This is the heart of the entire PIDGIN system. All of the basic PIDGIN 

features are written in ABL, the language of ABC. The syntax of ABL has 

already been described in order to introduce PIDGIN but the description of the 

primitives of ABC is relegated to Appendix I as they are more concerned with 

the implementation of PIDGIN than its structure and interpretation. 

ABL has been fully implemented using the programming language POP-

2 and it has been used to implement the basic features of PIDGIN. In order to 

simplify programming in ABL a language called Meta-ABL or MABL was 

developed, and all the examples given in ABL are written in MABL. MABL allows 

much of the nested bracketing of Strict-ABL to be omitted. All the modules 

described later are implemented either using MABL or using PIDGIN itself. 

ABL can be regarded as the "micro-code" of the PIDGIN machine in the 

sense that it was used to write expressions to implement the basic PIDGIN 

features and once the design of PIDGIN was fina1ised these expressions were 

never changed. That is, all further extensions to the system in terms of adding 

to its knowledge, both of facts and rules, can be done in PIDGIN and 

eventually, once the translator has been extended, in English. 

It should be remembered that ABL is not the deep structure of, natural 

language. It is at a level which is below the lowest level that can be altered by 

the natural language level. No natural language input is translated into ABL 

expressions and no ABL expression can be translated into natural language 

unless the expression is a valid PIDGIN statement. Very crudely, the part of the 

system written in ABL can be thought of as the hardware or the 

neurophysiology of the complete PIDGIN system. For example, one important 

capability possessed by PIDGIN is the ability to answer questions concerned 
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with its own workings. Such questions however can only be 

answered to the level of the PIDGIN programs that make up the system. For 

the system to produce more detailed answers it would be necessary to 

construct a "model" of the ABL programs in PIDGIN. Such a model would be a 

collection of PIDGIN facts and rules whose interpretation reflected the inner 

workings of the system, rather than a direct analysis of the system itself. 

2.2.1B PIDGIN 

As every PIDGIN statement is a member of the set of ABL expressions 

the ABC interpreter will interpret any PIDGIN statement. If the syntax of a 

PIDGIN statement is examined it will be seen that both a thought and a 

conception are applications whose first member is a concept (a connector or an 

act). When evaluated this will result in the reference of that concept being 

evaluated. Thus the reference of each of the eight connectors and ten acts 

should be an ABL expression whose evaluation results in the changes to the 

system associated with that act or connector. For example, if a PIDGIN 

conception is input as a statement then it should be added to the memory, and 

if a PIDGIN conception is input as a question then a matching conception 

should be retrieved from memory as the answer, and if a command then the 

appropriate action should be taken. The details of the actions performed by 

these expressions are described later in Section 2.3. 

The user who interacts with the system may do so at a number of 

levels: 

(i) Operating system command level 

(ii) Implementation language (POP-2) 

(iii) Associative Backtrack Language 
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(iv) PIDGIN language 

(v) English 

Commands are available at each level to allow the user to ascend or 

descend one or more levels, but the exact form of these implementation details 

will not be discussed here. 

At each level the syntax of the output from the system reflects the 

syntax of the legal input. This feature of the system becomes more marked at 

the higher levels. At the PIDGIN level the output from the system has the same 

syntax as the legal input to the system. However, certain errors at the PIDGIN 

level can result in a return to the ABL level together with an ABL error 

message. At the English level all errors are trapped and all output has a syntax 

related to the input syntax that can be translated by the system into PIDGIN. 

This is because both the English-to-PIDGIN Analyser and the PIDGIN to-English 

Synthesiser use the same dictionary. By observing the system's output the 

human user can learn what input the system will be able to translate. 

The program that reads, translates and evaluates PIDGIN is called the 

driver and this program is written in ABL. The simplest form the driver could 

take would be to read repeatedly a single PIDGIN statement in the syntax of 

the Input language, translate this into the Strict language and then evaluate it. 

The driver in this case thus repeatedly calls the assembler followed by the 

evaluator. The more complex driver actually used carries out tests and traps 

errors to provide a better interface to the PIDGIN user. If the system were used 

entirely at the English level then a PIDGIN driver and assembler would not be 

required. They are necessary in order to carry out the initial "bootstrap" to the 

English level and to provide a primitive level of control and adjustment to the 

working English level sys tem. 
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At the PIDGIN level it is also necessary to provide a 

disassembler for translating the Strict PIDGIN back into Input PIDGIN so that 

the output from the driver has the same syntax as the input typed in by the 

user. 

When the user is working at the English level the dialogue is translated 

immediately to and from Strict PIDGIN so the assembler and disassembler are 

not used. However, at the English level, all the other parts of the system are 

required, i.e. the ABL expressions associated with the connectors and acts and 

the resolver to compare statements. The resolver is used to search for a match 

between two statements. This search may involve further searching to match 

other statements. This mechanism is used to check input for consistency and to 

answer questions and carry out deductions. It is thus a fundamental part of the 

whole system. It can be divided into two parts, the matcher and the deducer. 

The matcher can be described by giving a whole series of rules that can be 

used to determine whether any two statements match. This is done in Section 

2.4.2. The deducer is used to answer questions that cannot be answered 

directly from the memory by matching but require further matching to be 

performed first, this is described in Section 2.4.3. 

2.2.1C Translator 

The translation from English to PIDGIN is carried out by an ABL 

program called the Analyser and the reverse translation from PIDGIN to English 

by another ABL program called the Synthesiser. These programs are described 

in more detail in Chapter 4 but the ideas have not been fully implemented as 

equivalent translators have already been implemented by R. Schank and 

others. 
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The translators can be sub-divided into parts corresponding 

to the various levels of translation. An important aim in designing the 

translators is to try to separate those parts of the translation process that are 

language dependent from those that are language independent (PIDGIN 

dependent) and to try to design the language dependent part in such a way 

that it can be easily updated and amended. Ideally such extensions to the 

natural language syntax that can be handled by the system should be possible 

at the natural language level by a series of definitions. The translators 

described in Chapter 4 make use of a dictionary in order to provide an easily 

amendable interface between the natural language and PIDGIN levels. 

2.2.1D Knowledge Base 

The complete system consists of a fixed core of ABL programs plus a 

collection of PIDGIN statements called the knowledge base. This knowledge 

base grows as the system converses with the user. All the facts and rules that 

determine the system's range and depth of knowledge are stored in the 

knowledge base. The knowledge base can be roughly divided into a collection of 

PIDGIN statements that initialise the system called the primary knowledge, a 

collection that provides the system with a rough knowledge of a wide range of 

facts and rules called the general knowledge, and a large number of specific 

facts and rules concerned with the particular application that the system is 

being asked to converse about called the specialist knowledge. 

Appendix II includes a typical set of primary knowledge statements. 

These create a primary set of concepts and provide a model for all future 

PIDGIN statements created by the Analyser (see Chapter 4). They also form 

the basis of the dynamic structure of the system by enabling certain commands 

and specifying the states produced. 
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The general knowledge (see example in Appendix II) extends 

the set of concepts, facts and rules started in the primary knowledge base. The 

difference between the two is that the primary knowledge remains the same no 

matter what application the system is used for, but the general knowledge is 

orientated to the application. The general knowledge forms a "world view" that 

places any particular application within a context. 

The general knowledge can be roughly divided into the following parts: 

i)  a structured set of group and entity concepts. 

ii)  their attributes, 

iii)  the relations among them, 

iv) a set of conceptions defining the possible combinations of the 

concepts, 

v)  a set of thoughts defining suggest and action information, 

vi) a set of "core beliefs" and inference rules. 

The "core beliefs" and rules incorporate knowledge that guides the 

system's behaviour and enables it to make predictions and answer questions 

about the likely behaviour of others. Colby (1969a) has estimated the core 

beliefs of a person as under 50. Typical such core beliefs inc1ude: 

i)  Avoidance. If one person does something that makes another 

person angry then the second person will often avoid the first. 

ii)  Retaliation. If one person does something that hurts another 

person then that second person will often want to hurt the first person. 
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iii)  Taking sides. If one person does something that hurts a 

second and a third person thinks the first did a good thing then the 

second person will often be angry with the third. 

iv) Alliance. If one person likes a second and a third person also likes 

the second then the first person will often like the third but 

v)  Triangle. If one person loves a second and a third person also 

loves the second then the first person will often hate the third. 

Other general information concerns basic enable and produce 

information, for example, for a person to transfer an object requires the person 

to be near the object, the object to be moveable, and the person to want to 

move it. Once moved the object will no longer be at the location it was at but 

will be at the location it was moved to. 

The world view forms a framework into which the system can slot new 

knowledge and from which it can make deductions to answer questions and 

solve problems (see Section 2.4.4). The setting up of the world view is the 

second step in the initialisation of a working PIDGIN system. The third and final 

step involves setting up a natural language to deep-structure dictionary to 

enable PIDGIN to translate to and from the deep structure. This final step is 

called "dictionary set-up" and is described in Chapter 4. The three steps create 

a working question-answering problem-solving system to which new concepts, 

new rules, new beliefs and new dictionary entries may be added at any time by 

conversing with the system in English. 

2.2.2 The Initialisation of the System 

The basis of a working conversational PIDGIN system is an ABC 

interpreter and an ABL assembler. These are currently implemented in the POP-
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2 programming language and they are described in Appendix 1. The 

initialisation consists of the 'three parts: 

A. Defining the PIDGIN system in ABL. 

B. Defining the English translator in ABL. 

C. Creating the Knowledge base in PIDGIN. 

2.2.2A Defining the PIDGIN System 

There are seven parts that must be defined: 

1. the eight connectors 

2. the ten acts 

3. PIDGIN assembler 

4. PIDGIN disassembler 

5. PIDGIN resolver 

6. PIDGIN driver 

7. initialising certain concepts 

Each of these consists of associating a complex ABL expression with 

some aspect of certain concepts. For example, a simplified version of the driver 

in MABL could be: 

<REPEAT [<ASSEMBLE> -TP. TP]>-DRIVER. 

This associates the expression on the left with the reference of the 

concept DRIVER. Appendix 1 gives the MABL expressions that form part of this 

first stage in the initialisation of the system. 
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2.2.2B Defining the English Translator 

The other major part of the system that is defined in ABL is the 

translator to translate between English and PIDGIN. This consists of three parts 

: 

1. the Analyser 

2. the Synthesiser 

3. the Dictionary 

Chapter 4 discusses these segments in more detail. The general 

approach is taken from the methods described by Schank although the 

implementation differs because of the advantage that can be taken of certain 

powerful primitives in ABC and because of the structure of PIDGIN. 

2.2.2C Creating the Knowledge Base 

Once the seven parts of the PIDGIN system have been assembled the 

system may be switched from working at the ABL.1eve1 to working at the 

PIDGIN level by evaluating the PIDGIN driver. Basically, this repeatedly calls 

the Input PIDGIN assembler and then evaluates the result. Further initia1ising 

of the system is done at the PIDGIN level and it can be separated into three 

parts : 

1. primitive knowledge 

2. general knowledge 

3. specia1ised knowledge 

These are described in the last section and in Appendix II. As each 

PIDGIN statement is read it is assigned a priority by the assembler. This 
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priority specifies how important that statement is and it is used to 

try to resolve inconsistencies within the system (see Section 2.4.1). At any 

moment the reference of the concept USER gives the current author and the 

PRIORITY aspect of that author is a number between 0 and 100 giving the 

priority associated with that author. 

If the priority is 100 then no checks for consistency are performed and 

the statement is stored immediately in the memory. Any statement with a 

priority of zero is regarded as no longer required by the system and if the 

system exhausts all the storage space available for the memory then such 

statements are automatically deleted. Any other priority is used to determine 

which of two conflicting statements the system will reject. For example, if the 

memory contains a conception with a priority modifier of 80 and a user with 

priority 50 tries to tell the system a fact that contradicts that conception then 

the user's fact will be rejected. In general a statement will be rejected if the 

memory contains a contradictory statement of higher priority. If the statement 

in memory is of equal or lower priority then the new statement is added to the 

memory in such a way that when the memory is searched it will always be 

found first. Further, it is possible for a user to alter his priority by using the 

modifier DEFN, this stores the statement with a priority 10 greater than the 

user's current priority and this enables the user to get the system to check his 

statements for self-consistency. 

The above simple priority system is sufficient to enable a simple linear 

hierarchy of counter checks to be maintained. Users with the responsibility for 

creating and maintaining the system will have a high priority whereas users 

who simply make use of the system will have a low priority to prevent them 

from destroying the consistency of the complete system. 
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During Part 7 of the PIDGIN initialisation the following 

associations are made: 

 90-GENERAL, PRIORITY . 

 100-SYSTEM, PRIORITY. 

SYSTEM-USER. 

This means that when the primitive knowledge is read the author is 

SYSTEM and the priority is 100. At the end of Part 1 (primitive 

knowledge) the user is changed by the statement : 

GENERAL-USER. 

and subsequent statements are assigned priority 90. The specialised 

knowledge may be set up by a number of users who may have different 

priorities (usually less than 90). 

Checks are required to prevent a user from altering his own priority. 

This is done by associating a class concept with the CLASS aspect of the author 

concept. There are three classes of user - SYSTEM, GENERAL and USER, and 

each class is associated with a different set of checks. A user working in 

SYSTEM class can alter any part of the system including class and priority; a 

user with GENERAL class cannot alter class or priority and cannot return to the 

ABL level (where such checks could not be made); a user with USER class is 

further restricted in that such a user may only work at the English level and 

cannot return to the PIDGIN level. The user name thus acts as a password and 

each user is required to state his name when first entering the system. 

Appendix II gives listings of parts of all three segments. The final 

segment, specialised knowledge, merges into the knowledge obtained from the 

end-user, the user who uses the system at the English level in order to solve a 

practical problem. All of Parts I and 2 and some parts of Part 3 are at the 

PIDGIN level but eventually it becomes possible to switch up to the English 
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level in order to teach the system new facts and rules. The switch is 

carried out by entering a PIDGIN statement consisting solely of the user name. 

This special statement is recognised by the BE act and it causes the system to 

use the English driver. This driver repeatedly calls the Analyser to read an 

English sentence and translate it into PIDGIN. It then evaluates the PIDGIN 

which results in a PIDGIN answer which is then translated back into English by 

the Synthesiser. This process is described in more detail in the next section. 

2.2.3 The Construction of the System 

The overall construction of the PIDGIN system is diagrammed in Fig. 

4.1 (Section 4.2.1). It can be seen that it is possible to regard it as consisting 

of three parts - the processor. the memory and the translator. 

2.2.3A The Processor 

The processor is the name given to the PIDGIN driver plus the ABC 

evaluator with its associated primitives. At any moment while the system is 

running the processor contains the PIDGIN statement being. evaluated. 

Because the evaluation of a single statement may result in further statements 

being evaluated before the first has completed evaluation a number of 

statements may be in the middle of being evaluated at any moment. The 

stacking and unstacking of these partially evaluated statements is taken care of 

by the PIDGIN driver. 

The evaluation of a PIDGIN statement either results in the statement 

being stored in memory or a matching statement being retrieved from the 

memory. A comparison between the evaluation of PIDGIN and the evaluation of 

a more conventional programming language, such as POP-2, may make the 

evaluation of PIDGIN clearer. In POP-2 a variable may be associated with a 

function body (a lambda expression) by defining a function with that name. 
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When that name is followed by round brackets containing 

expressions. the expressions are first evaluated and then the function is 

applied. In PIDGIN the distinction between function name and parameters is 

not so distinct. Functions do not have names but instead each function is 

associated with a description of the parameters it requires. When any 

statement is evaluated all the functions whose parameter description matches 

that statement are evaluated one by one until either one succeeds or all fail. 

Returning to the comparison with POP-2, it is as if functions with the general 

form, e.g. : 

function f a, b, c; 

 j(a, b); k(c); l(b, a, c); 

end; 

were interpreted as something like: 

function {a, b, c}; 

 if {a, b} and {c} and {b, a, c} then 

  true else false close; 

end; 

where, for example, {a, b} means apply all functions whose parameter 

description matches {a, b} until one returns true and if all return false then the 

result is false. If {a, b} , {c} and {b, a, c} all return true then {a, b, c} returns 

true. Anyone familiar with PLANNER will immediately recognise this goal-

oriented success/failure mechanism. 

The advantage of this evaluation scheme is that it is closely related to 

human question-answering conventions. New functions may be defined to 

extend the system capabilities without destroying previous definitions. The new 

function will automatically be tried if a matching statement is evaluated. The 

evaluation mechanism can be thought of as trying to prove a statement by 

searching for a fact (or disproving by counter-example in PIDGIN) or a rule. A 

fact is simply a function that is always true, to return to the analogy with POP-
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2, and a rule is a function that is true if a further series of 

statements is true (like function {a, b, c} above). 

One disadvantage of this method of evaluation is that, unlike 

conventional programming languages, functions cannot be called directly. The 

apparent inefficiency of this is overcome by the nature of a PIDGIN statement 

as a structure incorporating knowledge. The matching that must be performed 

before applying any function is an essential part of the question-answering 

process. 

The evaluation scheme actually used by PIDGIN is more complex than 

the above description suggests, for example, it involves the conjunction and 

disjunction of statements and negation. But the idea that matching is the 

fundamental evaluation process is equally true. A more complete description of 

the evaluation scheme of PIDGIN can be found in Section 2.4.1, and a complete 

description of the matching process is given in Section 2.4.2. 

Although it is possible to draw a close analogy between aspects 

of PIDGIN and PLANNER it is important to recognise the differences 

because it is in these that the extra power of PIDGIN lies. 

2.2.3B The Memory 

The memory can be divided into two parts - the immediate and the 

long-term memories. 

The two basic memory processes are" transmitting a statement to 

memory and retrieving a statement from memory. These can be performed 

explicitly using the TRANSMIT act (see Part 2.3B10) and they occur implicitly as 

evaluation proceeds (see the last division). 
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The efficiency of the memory largely determines the overall 

efficiency of the system. One efficient way of implementing the memory is to 

avoid multiple copies of a structure. This could be done during translation when 

new structures are created by first searching the memory for the structure. If 

this were done then the memory search for the complete structure would be 

much simpler. In such an implementation the actual structure representing a 

statement might be considerably different from that suggested by the syntax. 

For example, an actor could be set up as a basic data structure which combined 

all the qualifiers of its main concept, although it would be necessary to include 

references to the conceptions containing the actor in order to allow the 

modifiers to be checked. This flexibility of the PIDGIN implementation is not 

present in systems based on PLANNER where the data-base pattern is not 

restricted to any fixed format. 

All the above details of implementation obscure the central problem of 

efficiency, which is to find a way to overcome the combinatorial effect of a 

growing memory on the time taken to solve a given problem. Schwarcz (1970) 

points out that this combinatorial explosion comes not from the memory search 

for facts but from the investigation of inferences during problem solving. He 

suggests that a structure larger than his triples might mitigate and PIDGIN 

does comply with this suggestion but this only pushes back the explosion to 

slightly larger memory sizes. A complete analysis of the problem has not been 

done for PIDGIN but it is hoped that the increasing complexity of the memory 

as its size increases can be used to offset the inefficiencies resulting from the 

increasing size. By matching the implementation with the nature of the use of 

the deep structure it is hoped that the knowledge contained in the memory can 

be used as a heuristic to speed up searching by guiding the search to the right 

place. For example by controlling this search a1goritlunusing the "substitutable" 

relation (SUB) it will improve as the system is supplied with more concepts 
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because this will automatically limit the number of concepts that are 

substitutable for any particular concept used. 

2.2.3B1. Immediate Memory (IM) 

a. Short-term Memory (STM) 

STM enables conflicting facts (or different "possible worlds") to be 

stored in the memory without the inconsistencies interfering with each other. 

This is done by storing them outside the long-term memory (LTM) in the form 

of a tree structure so that any memory search always proceeds down a single 

path from the current leaf to the root. If the fact is not found in the STM tree 

then the LTM is searched, this can be diagrammed as: 

 

In this situation the facts A, B, C, and D will be examined before LTM is 

searched. 

As execution proceeds the STM tree grows and at any given point in the 

evaluation there is a current node and a current branch. A new node is set up 

in the following circumstances: 

i) When a rule is evaluated a new node is added to the tree so that 

any statements added to the memory while inside that rule can be 

easily removed if it fails. 
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ii) Similarly when evaluating a class of statements (i.e. a 

disjunction of statements) a new node is set up and any member of 

that class that stores a statement will do so to a different branch, 

iii)  and when evaluating a band of statements (i.e. a conjunction of 

statements) a new node is set up so that any statements stored can be 

easily removed if the band fails. 

If a rule, band or class succeeds then the current branch and node are 

not altered but if they fail then the current branch and node are set to the value 

they had before evaluating the structure. When an evaluation is complete all 

the statements stored between the current branch and the LTM can be added to 

the LTM. 

b. Suspended Evaluation Memory (SEM) 

Complete evaluation may be suspended, for example, to ask the user a 

question. This is done by saving the STM in a band called SEM. A new STM can 

then be started and used to evaluate the new input. Every saved STM in SEM is 

associated with what is called a reviver. This is a statement which if matched 

will restore the suspended STM and continue evaluation. 

For example, if the sentence: 

John flew to London. 

was input the system might generate the question: 

Was John a pilot or passenger? 

and suspend the current STM with the reviver: 

JOHN < SUB (A PILOT A PASSENGER». 
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When any sentence is input it is first stored and then 

compared with all the revivers in SEM. If any match the associated STM is re-

activated. As the required information will then be in the memory evaluation 

will be able to continue. To avoid confusing the user by reviving old evaluations 

the size of SEM is arbitrarily limited to five members, any new member after 

the fifth will replace the oldest member. 

c. Current Evaluation (CE) 

The current context of evaluation is determined by: 

(i)  the current STM tree plus the current branch and node. 

(ii) the current references of all concepts. 

(iii) the current statement plus all suspended statements. 

(iv) the current LTM. 

The manner in which the references and the nesting of statements are 

stored is partly described in Appendix I when the ABC system and the PIDGIN 

driver are discussed. To a large extent it is handled by the ABC system in a 

manner which is transparent to the workings of PIDGIN. 

d. Context Information (CI) 

The translation from English to PIDGIN and vice-versa requires context 

information to resolve and to create various references such as definite article 

and pronoun references. This information is held as the global reference of 

concepts, for example, the global reference of HUMAN might be JOHN. The 

global reference of certain special concepts is also held by the translator, for 
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example, HE, SHE, IT, ONE, THEY and WE, in order to provide a 

sentence context for resolving anaphoric references. 

If the sentence being analysed is the reply to a question then it might 

be elliptical if it immediately follows the question. The information for replacing 

the missing parts of the elliptical reply is obtained by the Analyser from the 

reviver of the last entry in SEM. For example, the reply to the question in 

segment (b) above might be: 

A pilot. 

The reviver supplies the missing information. 

Definite article references may need to be resolved from LTM. For 

example, "the girl next door" might cause the Analyser to ask the question A 

[YOUNG] WOMAN <LOC NEXTDOOR> which might find MARY <LOC 

NEXTDOOR> in the memory and resolve the reference. 

2.2.3B2 Long-term Memory (LTM) 

LTM contains all the statements that have been input to PIDGIN. They 

can be imagined as a linear list, in index-number order, to which new 

statements are added at the high-index number end. At the start are the low 

index statements of the primary knowledge, followed by the general knowledge 

and the specialist knowledge. The dictionary used by the translator is also 

stored in the LTM although its format differs from that of normal statements. 

When LTM is searched the search starts at the high index-number end and 

proceeds towards the low index-number end. So if the memory contains two 

statements that would match, the one with the higher index-number will be 

found first and terminate the search; the higher numbered statement is said to 

"hide" the lower. 
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Although this simple description of the LTM provides a clear 

model of the system's behaviour when searching it would be very in 

efficient if implemented this way and further it does not exhibit all the 

properties desired of the memory. Instead the LTM is organised as what is 

called a "merged" memory rather than a linear memory. The LTM is first 

partitioned into eighteen parts corresponding to the eight connectors and the 

ten acts. Each partition contains a merged list of all the statements which have 

that connector or act. The structure of the merge lists is best described by 

explaining how a new statement is added; there are three possibilities: 

i)  the statement matches nothing in the list; in this case the 

statement is added to the end of the list at which the search started, 

i.e. the newest are found first. 

ii)  the subject of the statement is more specific than a matching 

statement in the list; in this case the new statement is added before 

the old so that it will be found first in future searches. 

iii)  the subject of the statement is less specific than a matching 

statement; in this case the search continues until either a less specific 

or a miss-matching statement is found when the new statement is 

inserted before it. 

One actor is less specific than another if it is either substitutable for the 

other or they are the same (or equivalent) and the second is more qualified 

than the first. For example, ANIMAL is less specific than CAT and [BLACK] CAT 

is more specific than CAT. 

It can be seen that a merge list is a linear list if none of the statements 

in the list matches another. 
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The merge list for the act BE is called the "world model" 

because it contains all the states that describe the attributes of the objects 

known to the system. 

From what has been said it can be seen that the memory only grows. It 

would be useful in practise to have a "garbage collection" system that 

destroyed unnecessary statements when computer storage was full. This would 

be possible with the above merged lists by destroying specific statements if 

more general statements where present. This would result in the system losing 

specific information but retaining general information. It would also be possible 

for the system to generate general statements in order to replace two or more 

specific statements with a single general one. For example, if the statements: 

JOHN <POSS A CAT>. 

JOHN <POSS A DOG>. 

were stored in the memory they could be replaced by: 

JOHN <POSS A PET>. 

A similar approach to garbage collection is to destroy the attributes and 

specifiers of statements. The advantage of these approaches to garbage 

collection is that they do not simply destroy knowledge but gradually make it 

more imprecise and general. 

2.2.3C. The Translator 

During translation to and from PIDGIN a number of buffers are used to 

contain intermediate structures, the main sequence is : character buffer, word 

buffer (surface structure), item buffer (shallow structure), and then the 

processor (deep structure, PIDGIN). The output synthesis works in the reverse 

sequence using a different set of buffers. The precise way in which the buffers 

are used is described in Chapter 4. 
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2.3 The PIDGIN Concepts 

Before describing how questions are answered and problems solved by 

the process of matching statements it is first necessary to consider the simplest 

unit in PIDGIN, the concept. 

In all the examples where English is compared to an equivalent PIDGIN 

statement (see Section 2.1.3) it looks as if the PIDGIN statement is a sequence 

of words taken from the English sentence, re-ordered, bracketed and written in 

upper-case. This is misleading as it hides the fundamental distinction between 

the words in the English sentence and the concepts in the PIDGIN statement; it 

is more than just a matter of upper or lower-case. The upper case words in the 

PIDGIN statements are symbols of "universal human concepts". A universal 

human concept or concept is a language independent meaning. Two English 

sentences with the same meaning or in fact any sentences in any language with 

the same .meaning will translate into the same PIDGIN statement. The reason 

for using English words for some of the concepts is simply for convenience, but 

it can lead to confusion if the distinction is not borne in mind. 

There are some schools of thought that maintain that no two sentences 

have the same meaning and that the same sentence used on two separate 

occasions will have a different meaning on each occasion. I am not using the 

word "meaning" in this way. Two sentences have the same meaning if they 

convey the same explicit information. One practical method for judging if two 

sentences have the same meaning is to consider the circumstances in which 

one would be true and the other false. If there are no such circumstances then 

they have the same meaning and if the only such circumstances depend upon 

the disposition of some human actor referred to in the sentences then they are 

said to have nominally the same meaning. This definition is used to try to 

simplify the problem sufficiently to produce a working question-answering 
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system. More subtle difficulties can be considered later by the 

modification of the working system. 

During the analysis of English into PIDGIN, concepts may be introduced 

that do not occur explicitly as words in the English sentence, and words in the 

sentence may be lost. During synthesis of PIDGIN into English some concepts 

may not be realised as words and some concepts may be translated as 

complete English phrases. Further, a single English word might be the 

realization of a number of concepts; this is called "lexical" ambiguity. For 

example, the word "light" may mean LIGHTWEIGHT, LIGHTCOLOUR or 

LIGHTBULB. The converse is not true, that is PIDGIN is not ambiguous, no two 

concepts with different meanings have the same name. Some concepts are 

realised in English as word endings and inflexions, for example, those of 

number, gender and tense. 

The rest of this section deals with all the different classes of concept 

handled by PIDGIN - connector, act, nominal, relation and modifier. 

2.3A The Connectors 

The connectors are those concepts that are used .to link together 

conceptions in order to form thoughts. 

They are used to state knowledge and to control problem solving. There 

are eight connectors - SUGGEST, ENABLE, PRODUCE, CAUSE, THEREFORE, 

THROUGH, WHILE and IF. Each connector is associated with an ABL program 

that is evaluated if a thought containing that connector is evaluated (see 

Section 2.1.1 for the evaluation rules). In general if a thought is asserted then 

that thought will be stored in the memory and if a thought is evaluated as a 

question then the memory will be searched for a matching thought. 
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Before describing how the knowledge stored in the form of 

thoughts is made use of by the rest of the system it is necessary to explain the 

justification for just the eight connectors chosen. The connectors arise from a 

simple world description that arose from a consideration of the types of 

connectors described by Schank (1973b) and Abelson (1973). The world 

description is as follows: 

i)  At any moment of time, t, the world can be described completely 

by a band of states. This band is called the world model. 

ii)  Two moments of time are described by different band of states. 

iii)  An action is a function from one world model to another. An action 

can be enabled by zero or more states in a world model, that is, the 

action cannot occur unless those states are in the first world model. An 

action can produce zero or more states, that is, it can add those states 

to the second world model. 

iv) Any action may cause or block another action. 

v)  A cause or block may cause or block an action. 

vi) Between any two moments of time there is another moment of 

time. Thus as an action takes a finite length of time it can be analysed 

into sub-actions, that is, functions between world models occupying 

intermediate moments of time. These sub-actions may be specified by 

saying how an action is achieved through or by means of one or more 

other actions. The above points can be diagrammed as: 
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This shows how five of the connectors are related; the other three are 

fitted into the above model later in this section. 

2.3A1. SUGGEST (state-state) 

All the connectors playa dual role in the system; they enable natural 

language sentences to be stored in the memory in a suitable form for later 

interrogation and they act as controlling and guiding information for the PIDGIN 

problem solver described later. 

The SUGGEST connector is used to link two states (a state is a 

conception in which the act is BE) together. The linkage roughly corresponds to 

implication or causation, thought not logical implication which is handled by the 

IF connector. An example of a natural language sentence which would be 

translated into a thought involving SUGGEST is: 

"In chess control of the centre often leads to victory." 

It will be seen later how such information is used by the PIDGIN 

problem solver to form schemes and from these, plans. 

In fact SUGGEST may be used to join state-choices, that is, a 

conjunction and disjunction of states. For example: 

THE QUEEN1 <BELONG A PLAYER1> <ON THE BOARD> AND 
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THE QUEEN2 <BELONG A PLAYER2> <ON THE 

BOARD>[NOT] 

 SUGGEST THE PLAYER1 <WIN THE GAME>. 

SUGGEST is like CAUSE only between states rather than between 

actions. 

2.3A2. ENABLE (state-action) 

This connector is used to specify what state(s) must hold before an 

action can be performed as a command (see Section 2.4.1). Abelson (1973) 

tries to systematize the basic states that must hold for each of the acts 

described by Schank to be performed. He distinguishes between two types of 

enab1ement - instrumental control, where the state represents the main actor 

of the action being in a position to use the instrument(s) of the action, and 

social contract, where the state represents the actor of the action being the 

agent of a prior actor in a sequence of actions. PIDGIN does not distinguish 

between these two types but regards both as examples of a more general 

notion of enab1ement. 

There are no enabling conditions built into the system and if no 

enabling conditions are specified for an .action then that action cannot be 

obeyed as a command. However, if a matching action has the modifier CAN 

then the action is allowed regardless of enabling states. 

If some action is inappropriate in certain circumstances then it is 

necessary to define explicitly those circumstances using the ENABLE connector. 

For example, enabling conditions can be defined to prevent the system from 

making illegal chess moves: 

A [COLOUR] PIECE <ON A SQUARE1> [NOT] BE 

 ENABLE 

 THE PERSON <POSS A [COLOUR] PIECE1> 

  TRANSFER THE PIECE1 A SQUARE2 THE SQUARE1. 
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That is, for a person to move a piece to a square the square 

cannot already be occupied by a piece of the same colour. 

Before the system carries out any action it first searches the memory 

for a matching action with the modifier CAN; if none is found it searches for all 

matching enabling thoughts, if any are found then a further check is made to 

confirm that all the states enabling that action are true. 

Although some enabling conditions apply in most circumstances, for 

example, for a person to grasp an object they must be physically close to that 

object, most enabling conditions depend upon the circum stances. For example, 

the above chess rule does not apply if there is no game of chess taking place. 

To cope with this problem the enabling condition must be made more complex. 

The state requirement of an enabling condition may be in fact a state-choice, so 

the above condition could be modified to: 

A PERSON DO A CHESSGAME AND 

A PIECE<BELONG THE PERSON><ON A SQUARE>[NOT]BE 

ENABLE 

THE PERSON TRANSFER A PIECE2<BELONG THE PERSON> 

A SQUARE2 THE SQUARE. 

This also illustrates the fact that it is possible to state a condition in a 

number of different, but equivalent, ways. 

2.3A3 PRODUCE (action-state) 

This is used to specify those states that result from obeying an action 

as a command. Like enabling conditions there are no produce conditions built 

into the system but there are a number of basic enable and produce conditions 

in the general knowledge. Produce information is in some ways analogous to 

PLANNER's antecedent or asserting theorems in that it specifies how the world 

model is to be amended after a command has been obeyed. As this determines 

both how fast the memory grows and the range of questions that the system 
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can answer about its actions, a compromise must be reached. 

Certain states do not need to be specified as they can be deduced from the 

information available in order to answer a question, but the total set of states, 

the world model, must reflect a true picture of the world otherwise 

inconsistencies will not be detected and commands will not be enabled. This is 

because when the system checks for inconsistencies and when it checks 

enabling conditions no deductions are performed, they are simply checked 

against the current world model. So, if more enabling conditions are specified 

then more produce conditions must also be specified in order to ensure that the 

world model contains the necessary states. 

A typical primitive produce condition that would probably be in the 

general knowledge is: 

A PERSON TRANSFER AN OBJECT A PLACE1 A PLACE2 

PRODUCE THE OBJECT <LOC THE PLACE2>. 

2.3A4 CAUSE (action-action) 

The cause connector has been thoroughly discussed by Schank 

(1973b). It is realised in English in a great many ways, some explicit such as 

"because", "when" and "since" and some implicit e.g. "fly", "prevent" and 

"want". It is the combination of the few acts defined by Schank with the cause 

connector that enables him to encompass the meaning of so many English 

verbs with so few acts. For example: 

"John killed his teacher." 

becomes: 

"John does an action that causes his teacher to change from the 

state of being alive to the state of being dead." 
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2.3A5 THEREFORE (cause-action) 

This connector is used to link a cause with an action, for example: 

"As John stopped Mary going I'll go." 

becomes: 

"John carried out some action that caused Mary to not transfer 

herself from some place to another and therefore I did transfer 

myself from some place to that place." 

or, in PIDGIN: 

JOHN DO SOME ACTION 

CAUSE MARY [NOT] TRANSFER SELF A PLACE1 A PLACE2 

THEREFORE SELF TRANSFER SELF A PLACE3 A PLACE2. 

2.3A6 THROUGH (action-action) 

This connector is used to specify the means by which an action is 

carried out. It corresponds to what Schank calls the instrumental case. It is 

treated here as a connection between conceptions rather than as a part of a 

conception because every action can be divided into sub-actions and these sub-

actions into further sub-sub-actions and so it is more convenient to deal with it 

in the same way as other relation ships between conceptions, namely by means 

of the thought structure. Many verbs translate to the same basic act but with a 

different THROUGH action, for example, walk, run, fly, drive and ride are all 

concerned with the basic action of transferring an object from one place to 

another, but they all differ in the means by which this is achieved. This is 

expressed in the deep structure by the use of different THROUGH actions, for 

example, walk is transfer THROUGH moving one's legs, run is transfer 

THROUGH moving one's legs quickly. Further, some verbs correspond to very 

complex deep structures if their full meaning is to be extracted, for example, 

"drive" refers to a whole series of complex actions the total of which is to do 

with controlling a car. However, this is not a limitation of the notation but a 
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positive advantage. The complexity of the structure corresponds to 

the level of the systems knowledge of the concept. 

Driving involves a whole series of interrelated actions, and what any 

person understands by the word depends upon that person's knowledge of 

these activities. A child, an experienced driver and a racing-car driver all have a 

different understanding of the verb "drive". In fact it could be argued that every 

individual has a slightly different under standing because of their different 

experiences, but common to all of these there is the basic notion that driving 

concerns moving from one place to another using some vehicle. Similarly the 

structure that PIDGIN generates for the ver9 "drive" represents the systems 

knowledge of driving. This may change as the system is given more knowledge, 

for example, the system could be given more information concerning the sub-

actions THROUGH which the basic action of transferring is carried out in the 

context of driving. 

An interesting aspect of the THROUGH knowledge of the system is that 

it provides a basis for adding the capability for actually manipulating the world 

by means of some robotic facility. The breaking down of actions into sub-

actions is precisely the analysis required in order to determine the basic actions 

that the robotic facility is capable of performing. In such a system there would 

be a continuous linguistic link between the complex actions that the system was 

capable of talking about and the simple actions that it was capable of 

performing. This link would be provided by the THROUGH connector. For 

example: 

Lift block THROUGH Find block and Move hand to 

 block and Grasp block and 

 Move hand up. 

Find block THROUGH If not Perceive block Move 

 visual receptor 



 
95 

2.3A7 . WHILE (conception-conception) 

This connector is used simply to join two conceptions that took place at 

the same time. It could be incorporated in the conception by extending the 

possible time modifiers to include complete conceptions. However, this would 

subordinate one of the conceptions to the position of a modifier and it is often 

the case that both conceptions are of equal importance. It would also be 

possible simply to store both conceptions together with the fact that they both 

occurred at some particular time, t. However, the WHILE connection implies 

that not only did the conceptions occur at the same time but that they were 

also connected in some undefined way. For example, "I ran the bath while the 

child got undressed" implies the bath was run for the child, "I made the tea 

while the others prepared the sandwiches" implies a communal meal, and "Nero 

fiddled while Rome burned" implies something other than simply that they 

occurred at the same time. The WHILE connector enables the system to store 

this knowledge without needing to explicate the implication. 

2.3A8 IF (conception-rule) 

This connector forms the basis of the system's deductive capability. It 

corresponds to the consequent theorems of the PLANNER programming 

language. The way in which IF rules are used is described later (Deduction, 

Section 2.4.3), but their use can be simply illustrated by means of an example: 

A PERSON1 <TALLER A PERSON2> IF 

THE PERSON1 <HEIGHT =N METRE> 

AND THE PERSON2 <HEIGHT <LESS N> METRE>. 

is one of the possible ways of defining the relation "taller". Then if: 

MARY <HEIGHT 1.7 METRE>. 

JOHN <HEIGHT 1. 8 METRE>. 

it is possible for the system to deduce the answer to the question: 
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JOHN <TALLER MARY>? 

by using the IF rule. This is done by first matching the question against 

all the conceptions in the memory to see if it can be answered directly and 

then, if none match, to see if it can be matched against any IF rule. In the 

above example the question does match the IF rule (the exact rules for 

matching are described in Section 2.4.2), in this case the specific information 

contained in the question is substituted for the more general concepts in the 

rule giving: 

JOHN <HEIGHT =N METRE> 

 AND MARY <HEIGHT <LESS N> METRE>? 

that is, has Mary a height that is less than the height of John. This 

new question is answered from the memory using the same procedure 

as before but in this case it can be answered directly from the two assertions. 

This results in the IF rule succeeding and thus the original question succeeding. 

This would normally result in the controlling program generating the response: 

JOHN <TALLER MARY>. 

or, in English: 

Yes. 

2.3B The Acts 

The ten acts of PIDGIN (including BE) are based on the acts defined by 

Schank (1973b). They are not intended to exhaust the possibilities of all English 

verbs but to enable enough verbs to be handled to build up a reasonable 

vocabulary for a question-answering system. The question as to the minimum 

number of acts required has not yet been answered. However, Schank suggests 

that the number may be very small, perhaps less than twenty. Less than 

twenty certainly seems sufficient to encompass a large part of everyday 
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English. Schank has 14 - 16 acts in his notation but five of these are 

concerned with the senses and I have compressed these into one act 

(PERCEIVE). Also he has the acts PROPEL and GRASP which I have omitted; the 

idea of applying a force is included as a modifier and GRASP is included in 

MOVEing the hand around an object. I have introduced the act IDENTIFY as it 

seems necessary to cope with the type of pattern matching comparisons 

required in many problem domains, for example, the chess end-game 

considered later. Further I have changed the names of some of Schank's other 

acts in order to try to make their meaning more obvious from their name. 

It is interesting to compare with the above the ten operation words . of 

Basic English (Ogden 1933), "make", "put", "take", "keep", "let", "give", "get", 

"go", "come" and "do" which, with the auxiliaries and directives, immediately 

give the equivalent of 200 English verbs. It can be seen that nine of the ten are 

roughly handled by the two acts PASS and TRANSFER in PIDGIN. 

The acts are the base of the system as they define all the possible ways 

in which actors may be combined. Because there are so few and because no 

more are required, the complete description of these acts is simple to set out 

and will remain valid no matter how far the system is extended. All growth of 

the system's knowledge proceeds through new combinations of the ten acts 

with a growing number of actors. Although the acts have names which are 

English verbs this is only a mnemonic convenience to help the reader. The 

actions performed by the acts are close to just one of the many different 

meanings and shades of meaning of the verbs. The following diagram shows a 

simple framework that expresses one way in which nine of the acts are related: 
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This should be seen together with the description at the beginning of 

the last division where the idea of an action as a state change is put forward in 

order to discuss the possible connections between actions. The above diagram 

shows the possible actions. The only act not included is PASS; this is because 

this act expresses the complex idea of ownership and this involves at least two 

thinkers. The diagram shows the possible ways in which any state may be 

transformed into another. The time axis is horizontal with the later time on the 

right, although COGITATE may extend over a long time period and involve 

many TRANSMIT acts. The diagram represents the way in which the acts fit 

together and it is shown simply to give the reader some idea of the motivation 

for choosing the ten acts described next. 

There are two other acts shown in the syntax (Section 2.1.1), TRANS 

and TROW, these are not acts but stand in place of acts. TRANS may be 

substituted for any of the acts MOVE, PASS, TRANSFER, and TRANSMIT, and 

TROW for any of COGITATE, IDENTIFY, PERCEIVE and DO. 

2.3B1. BE 

ANY THING BE. 

This act is separate from the others in that it is used to construct a 

state rather than an action; in this sense it is not really an act at all. It is used 

to give an actor the status of a conception. The above conception gives the 
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most general form of a state, where the concept THING can be 

substituted for any other entity or group concept. In general it is used to 

specify the attributes or relations of an entity or group concept at any particular 

time. For example: 

MARY <AUNT JILL>. 

A [RED] BOX <ON THE TABLE>. 

[HAPPY] JOHN . 

FIDO <SUB A DOG>. 

The set of all such states known to be currently true by the system is 

called the "world model" because it represents inside the system a picture of 

the current static state of the external world. Note that the input language 

syntax allows BE to be omitted. 

2.3B2. BECOME 

ANY THING BECOME SELF. 

This act is the most primitive of all the acts and the most general. It 

enables the initial and final state of a transformation to be specified without 

needing to describe how the transformation was achieved. 

It is usually used to specify some change in one or more of the 

qualifiers of an entity or group concept. The act is restricted in that the object 

must always be the same nominal as the subject, so by the rules of the input 

language the object nominal is always SELF. For example: 

A [RED] BOX <LOC FLOOR> BECOME SELF <LOC TABLE>. 

BOX1 BECOME SELF <ABOVE BOX2>. 

BOOK <BELONG JOHN> BECOME SELF <BELONG BILL>. 

BECOME is useful when an action is required but it is not known or not 

important which act is involved. For example, the CAUSE connector requires an 

action and BECOME can be used to supply it in the cases where it is only the 

final state that is important, for example: 
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Matches cause fires. 

SOME MATCH <LOC A PLACE> BECOME [ALIGHT] SELF 

 [CAN] CAUSE THE PLACE BECOME [ALIGHT] SELF. 

2.3B3. COGITATE 

ANY THINKER COGITATE A THOUGHT. 

Like all the acts COGITATE can be used in two ways by the PIDGIN 

system, as "data" forming part of a deep structure representation of some 

linguistic knowledge and as "program" when that same deep structure is 

evaluated. The action taken depends upon the context of evaluation; if the 

conception is an assertion then the acts add the conception to the memory; if a 

question then a matching conception is retrieved from memory; but if it is a 

command then the action taken depends on the particular act. In the case of 

COGITATE there are a number of possibilities, depending on the object: 

i)  Judging. If the object is a conception then it is checked to see if it 

is positive or negative (see Division 2.4.4A), if positive the conception 

succeeds, if negative it fails. 

ii)  Decision. If the object is the concept ACTION then if its reference 

is a conception the action taken is the same as in (i), if the reference is 

a choice of actions then the best (most positive value) is selected and 

made the reference of ACTION. If the reference is anything else then 

the action taken is as in (i) and the conception found is made the 

reference of ACTION. 

iii)  Planning. If the object is the concept PLAN then COGITATE will 

form a plan (see Section 2.4.4) and make it the reference of PLAN. If 

the reference of PLAN is already a plan (a choice of actions) then the 

plan will be checked and corrected if unsatisfactory. 



 
101 

iv) Scheming. If the object is the concept SCHEME then a 

new scheme is formed (see Section 2.4.4) and made the reference of 

SCHEME. If the reference of SCHEME is already a scheme (a choice of 

states) then the scheme will be checked and corrected if unsatisfactory. 

v)  Generalising. If the object is the concept POSSIBILITY then a 

conception is selected at random and generalised (see Section 2.4.1) 

and made the reference of POSSIBILITY. If the reference is already a 

conception then that conception is generalised. 

In the above where ACTION, PLAN, SCHEME and POSSIBILITY are 

mentioned any concept for which these are substitutable is accepted. 

If a plan or scheme cannot be formed, or if a conception cannot be 

consistently generalised or an action is negative then the COGITATE conception 

will fail. 

As "data" the act is used to incorporate the meaning of many English 

mental-action verbs, for example, "ponder", "consider", "plan", "think", 

"wonder", and "decide", although some uses of these verbs can be better 

realised by TRANSMIT or DO. Some examples of the use of COGITATE are: 

John wondered whether to go to the cinema. 

JOHN COGITATE <JOHN TRANSFER SELF A PLACE CINEMA>. 

John loves Mary. 

JOHN COGITATE <MARY BE> 

 CAUSE JOHN BECOME [LOVE] SELF. 

John wondered if he'd done the right thing. 

JOHN COGITATE <JOHN [PAST] DO AN ACTION>. 

John decided to give Bill the book. 

JOHN COGITATE <JOHN PASS BOOK SELF BILL>. 

2.3B4. DO 

ANY LIFE DO ANY THOUGHT. 

This act is used to carry out a thought, which may be a conception, 

program (i.e. a conception-choice) or plan: 
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i) Conception: The conception is evaluated; this is 
equivalent to: 

SELF TRANSMIT A THOUGHT HERE SELF. 

ii)  Program: the program is evaluated; if it fails then any side effects 

are automatically undone. 

iii)  Plan: the first action of the plan is removed from the plan and 

evaluated. 

This act occurs in the deep structure of verbs involving a number of 

unspecified actions, for example, "make", "build", "grow" and "drive" and also 

verbs in which the actions involved are even less specific, such as "like" and 

"want". In some cases it may be possible to say what some of the actions are 

but not all. In these cases DO expresses the fact that not all the actions 

involved have been specified, for example: 

John grows roses 

JOHN DO <JOHN TRANSFER FERTILISER A BAG 

SOME GROUND <NEAR A ROSE> 

AND JOHN TRANSFER SOME WATER A PLACE 

SOME GROUND <NEAR A ROSE>> 

CAUSE SOME ROSE BECOME [GOOD] SELF. 

In this way it is possible to add to the systems knowledge of what 

growing involves and yet at the same time to include the fact that growing is 

more than that. 

2.3B5. IDENTIFY 

(ANY THINKER ANY LIFE) [CAN] IDENTIFY ANY PATTERN. 

The object of IDENTIFY is compared by the subject with its perceived 

view of the world. If the subject is not a THINKER then this view must be the 

visual field of the subject as perceived by the PERCEIVE act. Otherwise, it may 

be an internal mental view. For example: 

FIDO<BELONG JOHN>IDENTIFY JOHN<NEAR DOG>. 
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but: 

JOHN IDENTIFY FIDO<BELONG JOHN><FAR JOHN>. 

That is, JOHN can compare an internal mental image of his dog with 

other internal mental images (say to describe his dog or to identify a picture of 

his dog), but his dog can only compare its internal mental image of John with 

its visual impression of John. Thus IDENTIFY is used to represent the deep 

structure of verbs such as "recognise", and "identify". 

However, the IDENTIFY act was not introduced so much for its use in 

allowing the deep structure of certain verbs to be represented more accurately, 

but because it could be associated with a new range of capabilities for the 

PIDGIN system, namely a powerful pattern-matching ability. This pattern-

matching ability was found to be desirable when tackling complex problems 

such as the chess endgame problem because without it a long-winded linguistic 

description was required together with an even more complex set of IF rules so 

that the linguistic pattern matcher could deduce that "above and to the left" is 

the same as "left and above" and so on, on the chess board. 

From the syntax rules (Section 2.1.1) it can be seen that a pattern may 

be either a lattice, a grid, a line or an actor. A lattice is a three-dimensional 

pattern, a grid is a two-dimensional pattern, and a line is a one-dimensional 

pattern of actors. When the IDENTIFY act is evaluated as a command the 

pattern which is its object is compared with the pattern which is the current 

reference of the concept VIEW. Depending on the modifiers of IDENTIFY, its 

object pattern and the VIEW pattern the IDENTIFY conception will either 

succeed or it will fail. A simple pattern is: 

<<A B C> <D E F> <G H I>> 

Which represents the grid: 
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A B C 

D E F 

G H I 

As the members are actors they may be bands or classes of actors, for 

example: 

<<WALL        WALL        WALL> 

<TABLE [CUP SAUCER] TABLE> 

<TABLE         TABLE  (SPOON FORK)>> 

If this pattern was the reference of VIEW then the command: 

SELF IDENTIFY SOME CUTLERY. 

would succeed leaving the reference of the concept CUTLERY equal to 

(SPOON FORK). Of course, if the conception had been: 

SELF IDENTIFY A FORK. 

it would have failed (according to the matching rules for actors, Division 

2.4.2B). A pattern can be set up in VIEW by the TRANSMIT act (see Part 10), 

for example: 

SELF TRANSMIT * <<A SQUARE WKING A SQUARE> 

   <A SQUARE WPAWN A SQUARE>> 

   HERE VIEW 

would transmit the 2x3 grid to VIEW. 

The view (the pattern that is the reference of the concept VIEW) can be 

regarded as the systems "camera" picture of the world and also as its internal 

imagination. However, it will become outdated as soon as any actor in the view 

is moved. To prevent this if any object is transferred all view are examined and 

suitably updated. These changes are side-effects so if the rule containing the 

transfer later fails then they will all be undone automatically. This is useful 

during problem solving because it enables the system to tryout possibilities "in 

its imagination" so that they can be rejected if unsuccessful. 
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The matching ability of IDENTIFY is based on the PIDGIN 

conception matcher described in Section 2.4.2. A conception can itself be 

thought of as a pattern that is a linguistic picture of the world, each actor in it 

is a quantified and qualified nominal concept (called Picture Producers by 

Schank), and the act specifies the framework in which the actors sit in certain 

relationships (subject, object, modifier and so on). 

If the object pattern is a single actor then it is simply compared with 

each actor in the view and will succeed if anyone succeeds. However if both the 

object and view have dimensionality then the possible comparisons become 

more complex. To begin with the object pattern must be the same or a lower 

dimensionality than the view and further, if they have the same dimensionality 

then the object pattern must have the same number or fewer members. The 

object pattern is then "passed over" the view in the following order: 

A lattice is a series of applications which are grids; the first (that is the 

first to be matched) is the FRONT-most, the last the BACK-most. 

A grid is a series of lines; the first is the ABOVE-most, the last the 

BELOW-most. 

A line is a series of actors; the first is the LEFT-most, the last the 

RIGHT-most. 

FRONT, BACK, ABOVE, BELOW, LEFT and RIGHT are relations used to 

specify the relative positions of two actors. If the view is a lattice all six apply, 

if a grid then only ABOVE, BELOW, LEFT and RIGHT, if a line only LEFT and 

RIGHT, and if an actor then none of them. 

IDENTIFY may be modified by a degree and a type modifier in order to 

further describe the matching algorithm required. The degree modifier may be 
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MATCH, SIMILAR, ROTATE or MIRROR and MATCH is assumed if the 

degree modifier is omitted. The type modifier may be SAME, RSUB, VAGUE, 

TYPE or LIKE to specify how each actor is to be compared. RSUB is assumed if 

the type modifier is omitted. Thus a total of 20 different styles of matching may 

be performed. 

a. Degree Modifiers 

i)  MATCH. This is the default if the degree modifier is omitted. It 

specifies that the object pattern and view are to be compared in all the 

possible ways that, without rotation, the object pat tern can be entirely 

"covered" by the view. One pattern entirely covers another if and only if 

every member of the second pattern has a corresponding member in 

the first pattern. Another way of describing this is to imagine the view 

as an infinite lattice (or grid, or line) every point of which contains the 

concept THING except for those points explicitly specified by the 

pattern itself. The concept THING can be substituted for any other 

concept so, as it is being matched against, it will fail (unless matched 

by the concept THING). Similarly, the object pattern should be 

imagined as an infinite lattice (grid, line) of THING points. Matching 

starts at the front, top left and the object pattern is "slid" over the view 

in the order described above (cf. reading a book). This continues until 

the back, bottom, right is reached, when the IDENTIFY conception will 

fail, or until a match is found, when it terminates the search and 

immediately succeeds. A 2x2x2 object pattern can thus be compared at 

eight different positions on a 3x3x3 view pattern if the degree modifier 

is MATCH. 

ii)  SIMILAR. This is the same as MATCH but will succeed the first 

time that more than half the actors of the object pattern are matched. 
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iii)  ROTATE. This is like MATCH but at each position the 

object pattern will be rotated to try to match it. If the object pattern is 

a line this will involve a maximum of the same number of comparisons 

as a MATCH; if it is a grid it will involve four times as many and if a 

lattice twenty four times as many. iv) MIRROR. This is like ROTATE but 

it also tries rotating the object pattern in the next higher dimension. 

This is only used typically for a line, when twice as many comparisons 

are possible, and for a grid, when twice as many comparisons as for 

ROTATE are possible. To MIRROR compare a 31<:3 object grid with an 

8x8 view grid involves a maximum of 6x6x4x2 or 288 positions for 

comparison. 

b. Type Modifiers 

i)  SAME. The above degree modifiers are used to specify how the 

two patterns are to be moved over each other, the type modifiers are 

used to specify how each pair of actors is to be compared for a 

successful match. SAME indicates that two actors should only match if 

they are the same or equivalent (see Section 2.4.2). 

ii)  RSUB. This is the default assumed if the type modifier is omitted. 

RSUB specifies that the comparison to be made should be the same as 

that used by the matcher when comparing actors in conceptions (see 

Section 2.4.2). 

iii)  TYPE. One of the facilities of the matcher is to be able to check 

that two actors are "vaguely" the same; two sorts of vagueness are 

handled, TYPE and LIKE, plus their combination VAGUE. 

Most general terms in English are vague in terms of their extension that 

is in terms of what does and what does not count as a member of the 
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set named by the general term. An analogous feature in 

PIDGIN is created by regarding a concept to be TYPE vaguely the same 

as another concept if it is a member or subset of the concept which is 

the immediate superset of the first concept. To put this in PIDGIN 

terms means rephrasing "subset" and "superset" in terms of 

substitutability. If there are two concepts, A and B, related by the 

substitutable relation SUB in the form: 

  A <SUB B> 

then B is substitutable for A and is called the category of A. So for 

example, the category of JOHN might be MAN, and the category of DOG 

might be ANIMAL. One concept is a TYPE-vague match to another if the 

category of the first is substitutable for the second. The only restriction 

is that if either concept is an entity concept then the other must be. For 

example: 

  FIDO <SUB A DOG>. 

  ALL DOG <SUB AN ANIMAL>. 

  ALL CAT <SUB AN ANIMAL>. 

  ROVER <SUB A DOG>. 

then ROVER is TYPE-vague the same as FIDO, and DOG is TYPE vague 

the same as CAT, but FIDO is not TYPE-vague the same as CAT. 

Note that as the number of group concepts increases so TYPE 

vagueness decreases. For example, if dogs are distinguished as 

ALSATION and POODLE then Alsatian dogs will only be TYPE-vague the 

same as other Alsatian dogs. 

iv) LIKE. With LIKE-vague comparisons only the qualifiers are 

compared. Two concepts are LIKE-vague if more than half of the 

qualifiers of the concept with the least number of qualifiers (but at least 

one) match some qualifier of the other concept. For example, if: 



 
109 

  ALL PEBBLE <SUB A [ROUND] STONE 

    <TEXTURE SMOOTH>> 

  ALL EGG <SUB A [ROUND] OBJECT <BELONG A HEN> 

    <TEXTURE SMOOTH>> 

  then PEBBLE and EGG are LIKE-vague. As the number of defining 

characteristics increases so the number of LIKE-vague concepts will 

probably decrease. 

v)  VAGUE. This type combines TYPE and LIKE. Two actors are 

VAGUEly the same if the are TYPE-vague the same or if they are LIKE-

vague the same or if their category concepts are LIKE-vague the same. 

2.3B6. MOVE 

ANY LIFE MOVE ANY BODYPART A PLACE1 A PLACE2. 

This act is used to express verbs involving bodily movement, such as 

"punch", "walk", "eat" and "breathe". The body part specified as object must be 

part of the subject carrying out the action, and the places must be situated 

inside or close to the body of the subject. The act is used to express the verbs 

concerned with ingestion ("drink", "eat", "breathe") as well as expellation 

("breathe"). For example, breathing consists of inhaling ("transferring air from 

near the body to lungs by moving chest out") and exhaling ("transferring air 

from lungs to near body by moving chest in"). The movement of this act 

involves two places, both outside but near the body, for example, eating may 

involve moving the hand from the food source to the mouth, walking involves 

moving each leg alternately forward. 

John punched Bill. 

JOHN [<DEGREE VIOLENT>] MOVE FIST A PLACE1 

    A PLACE2 <LOC BILL>. 

John is eating a sandwich. 

JOHN TRANSFER A SANDWICH A PLACE1 STOMACH 

 THROUGH JOHN MOVE HAND A PLACE2 THE SANDWICH 

    <LOC THE PLACE1> 

 AND JOHN MOVE SOME FINGER A PLACE3 

  <FRONT THE SANDWICH> A PLACE4 

  <BACK THE SANDWICH> 
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 AND JOHN MOVE HAND THE PLACE1 MOUTH. 

The last example illustrates how the THROUGH connector can be used 

to fill in the details of an action to virtually any level of detail. In both examples 

the object and any body part mentioned are assumed to belong to the subject 

unless otherwise stated. 

Evaluated as a command it is this act that would be responsible for 

controlling any robotic activity. For example, in a Winograd type of block 

moving environment the MOVE act would be used actually to control the crane. 

The THROUGH connector would be used in such circumstances to describe the 

required activity down to the level of individual movements that the devices 

attached to the system were capable of being commanded to do. It is assumed 

that with any set of devices there would be a certain group of primitive 

commands for controlling those devices and that higher level commands could 

be constructed using the THROUGH connector. 

2.3B7. PASS 

ANY THINKER PASS ANY OBJECT ANY OWNER1 ANY OWNER2. 

This is one of the transfer acts (MOVE, TRANSFER, TRANSMIT and 

PASS). In this case it is the possession of an object that is transferred. This 

transfer is performed by the subject, who may be the donor (OWNER1) the 

recipient (OWNER2) or neither. The act does not imply ownership in a legal 

sense but possession in a social sense. It is the possession expressed by the 

relation POSS. 

The act will usually be enabled by OWNER1 possessing (POSS) the 

object OBJECT and it will usually produce OWNER2 possessing the OBJECT and 

OWNER1 not possessing it. Alternatively, the act may be enabled by OWNER1 

having (the HAS relation is usually defined in the general knowledge) the 

OBJECT and produce OWNER2 having it without OWNER1 losing it. The second 
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type of transfer is that associated with diseases and knowledge and 

it is also the type of "passing-on" transfer that occurs with the act TRANSMIT. 

The act occurs in the deep structure of verbs associated with transfer 

such as "give", "take", "sell", and "buy". These will often be accompanied by a 

corresponding change in location but this is not necessary. Some examples are: 

John gave his book to Bill. 

JOHN PASS BOOK SELF BILL. 

John took a book from Bill. 

JOHN PASS BOOK BILL SELF. 

2.3B8. PERCEIVE 

ANY LIFE PERCEIVE PATTERN. 

This act is the instrument (specified using the THROUGH connector) of 

all acts concerned with sensing the external world, namely those TRANSMIT 

acts in which the source is one of the sense organs. I t can also be used to 

specify that the subject "sensed" the object without needing to specify the 

particular sense involved. For example: 

Bill saw John kissing Mary. 

BILL TRANSMIT <JOHN TRANSFER MOUTH A PLACE 

      MOUTH<BELONG MARY>> 

     EYE SELF 

  THROUGH BILL PERCEIVE [JOHN MARY]. 

John smelt the rose. 

JOHN TRANSMIT [SMELL] ROSE NOSE SELF 

 THROUGH JOHN PERCEIVE ROSE. 

2.3B9. TRANSFER 

ANY FORCE TRANSFER ANY OBJECT ANY PLACE1 ANY PLACE2 

This act refers to the physical transfer of an object from one location to 

another by the application of some force (animate or inanimate). The act would 

typically be enabled by the object being located at the source location (PLACE1) 

and would produce the object being located at the destination location (PLACE2) 

and not at the source location. However, more complex conditions and results 

could be specified, for example, that the force is able to apply itself to the 
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source place and is sufficient to reach the destination location, that 

the object is transferable, and that the force has access to any instrument 

required to carry out the action. Some simple uses are: 

John went to school. 

JOHN TRANSFER SELF A PLACE SCHOOL. 

John and Mary walked to the park. 

(JOHN MARY] TRANSFER SELF A PLACE PARK 

 THROUGH (JOHN MARY] [REPEAT] MOVE 2 LEG 

   A PLACE1 A PLACE2. 

In the current system the TRANSFER act evaluated as a command 

automatically searches the current view for the object specified and if found 

updates the view to describe the object's new position. 

2. 3B10 TRANSMIT 

ANY THINKER TRANSMIT ANY THOUGHT ANY MIND1 ANY MIND2. 

This mental transfer act is used to transfer between locations in one 

mind ((i), (ii) and (iii) below) or between minds ((iv), (v) and (vi) below). The 

following list gives all the possible source and destination locations for this act: 

i) HERE. This entity concept can be used in the source position to 

transmit from the object position, or in the destination position to 

transmit to the object. This can be used in PIDGIN in a way that is 

ana1agous to assignment in a conventional programming language, for 

example: 

  SELF TRANSMIT A THOUGHT USER HERE. 

would read (and trans1ate if in English) a thought from the user and 

make it the reference of the concept THOUGHT. 

ii) MEMORY. Can be used to recall from memory (source position) or 

to store in the memory (destination position). 

iii)  VIEW. This concept allows the view to be accessed or altered. 
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iv) SELF. In the subject position of a conception this 

concept refers to the subject of that conception. If a thought is 

transferred to the SELF of the PIDGIN system then this is equivalent to 

transferring to HERE and to MEMORY; similarly if SELF refers to some 

other THINKER it is assumed to be transferred to the MEMORY of that 

THINKER. 

v)  USER. This is a group concept that includes all minds that PIDGIN 

can transmit to. Therefore, before PIDGIN can communicate to a 

person the name of that person must be defined as one for which USER 

may be substituted, for example: 

  JOHN <SUB A USER>. 

vi) THINKER. A group concept that includes all minds that can 

transmit and be transmitted to, so: 

  ALL USER <SUB A THINKER>. 

  Verbs that include TRANSMIT in their deep structure are, for 

example, "remember", "learn", "speak", "teach" and "listen". 

 John recalled the time they met. 

 JOHN TRANSMIT<SELF<NEAR PERSON>>MEMORY SELF. 

 John told Bill to go. 

 JOHN TRANSMIT<BILL TRANSFER SELF A PLACE1 A PLACE2> 

  SELF BILL. 

  When a thinker is specified as destination it is assumed that the 

thought object is transmitted to that part of the mind of the thinker 

concerned with comprehension, in the case of the PIDGIN system the 

evaluator. 
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2.3C Actors 

Actors are the PIDGIN equivalent of what in Schank's notation would be 

fully qualified picture producers or PPs. An actor is a qualified entity-concept or 

a quantified and qualified group-concept. The distinction between these two 

types of actor corresponds to the distinction between singular and general 

terms as described in Section 4.2.1. The memory of PIDGIN is thus organised 

at the lowest level into actors and these are brought together by the acts to 

form conceptions which may be further organised into thoughts by the 

connectors, thus: 

 

An actor corresponds to a noun group in systemic grammar that is it is 

a complete description of an object set, for example: 

John some apples 

some apples 

all the other ten very worn school books in the library 

However, an actor is a conceptual unit in PIDGIN and a noun group is a 

syntax unit in English, therefore there are a number of differences. For 

example, definite descriptions are replaced by the entity-concept that is being 

described, and rank-shifted qualifying clauses are usually replaced by a 

separate conjoined conception. 
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2.3C1 Entity and Group Actors 

An actor is essentially a qualified concept. There are two types of 

concept, entity and group concepts. An entity concept names or purports to 

name a single object and may not be substituted for any other concept (except 

an equivalent entity concept). A group concept is true of each, severally, of any 

number of objects. Corresponding to these two types of concept there are two 

types of actor, an entity actor which is an entity concept qualified by other 

concepts, and a group actor which is a group concept quantified (to define the 

number of objects being mentioned) and qualified by other concepts. The 

distinction between entity and group concepts runs through the complete 

system. 

A subscripted group concept is treated as the same concept as its 

unsubscripted form except that it may have a different reference, but each 

subscripted entity concept is treated as a different (entity) concept, with a fixed 

reference. 

A new concept is defined by specifying the concept that can be 

substituted for it, using the SUB relation. This concept must be a group concept 

which has itself been previously defined in this way. The complete set of 

definitions serves to define the relation of each concept to another and the 

complete set forms a tree, at the root of which are the group concepts which 

'are built into the initial system, for example, the group concept THING. The 

built-in concepts have special features associated with them, for example, the 

acts, which are entity concepts, have already been described. The relations are 

group concepts with certain properties (described later) that they pass on to 

any concept for which they may be substituted. The primitive knowledge will 

usually contain a series of definitions that set up a range of new concepts that 

are then used to define the possible subject, object, source and destination 
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actors for each of the acts as shown in the last division. These 

concepts form the basis of the world view set up later by the general and 

specialist knowledge. 

The following parts deal with the possible quantifiers and qualifiers of 

these concepts in order to try to show the range and limitations of the actor 

structure in PIDGIN. 

The following definitions show part of a typical primitive know ledge 

base that would organise the nominal concepts in a manner consistent with the 

model conceptions given in the last division: 

ALL FORCE <SUB A THING>. 

ALL OWNER <SUB A THING>. 

ALL PLACE <SUB A THING>. 

ALL OBJECT <SUB A PLACE>. 

ALL BEING <SUB A THING>. 

ALL THINKER <SUB A BEING>. 

ALL LIFE <SUB A BEING>. 

ALL BODYPART <SUB AN OBJECT>. 

ALL BODYPART <PART A LIFE>. 

ALL MIND <SUB A PLACE>. 

ALL MIND <PART A THINKER>. 

ALL MEMORY <SUB A MIND>. 

ALL USER <SUB A MIND>. 

ALL VIEW <SUB A MIND>. 

HERE <SUB A MIND>. 

SELF <SUB A USER>. 

2.3C2. Quantifiers 

This structure occurs only within a group actor. It defines the number 

of the nominal concept as being equal to, more than, less than or 

approximately equal to an arithmetic expression. The simplest form of an 

arithmetic expression is a number, thus: 

three books   3 BOOK 

more than four books <MORE 4> BOOK 

about one hundred books <ABOUT 100> BOOK 

More complex expressions involve the addition, subtraction, 

multiplication and division of numbers, numeric "variables" and actors: 
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Mary is twice John's age. 

MARY <AGE <MULT =N YEAR <OLD JOHN> 2> YEAR>. 

That is, the number of years of Mary's age is equal to two multiplied by 

the number of years of John's age (N), so if: 

20 YEAR <OLD JOHN>. 

Then the system can calculate that: 

40 YEAR <OLD MARY>. 

The other quantifier, ALL, plays a special role, it is not used to signify a 

particular numeric quantity but is used refer to the group as a whole, for 

example, in setting up definitions and attributes of the complete group. In 

order to discuss the adequacy of the quantifier construction in PIDGIN a few 

English quantifiers will be examined to see if, and how, they might be 

translated into PIDGIN. The following list gives a few English quantifiers: 

very 

nearly, almost 

all, both, at least, half, third, quarter 

a, no, the, some, any, each, another, neither, every, several 

other, same, few, certain 

one, two, three ... first, second, third 

The quantifiers concerned with approximation ("very nearly", "nearly", 

"almost", "approximately", "aboutl1 and so on) are handled by the quantifier 

comparator ABOUT. This comparator assumes an (arbitrary) variation of 25% 

either side of its argument. If necessary PIDGIN could be altered to allow an 

explicit variation to be stated to cope with the difference between say "very 

nearly" and "nearly". However, it is very difficult to quantify such variations as 

they seem to depend on the magnitude of the quantity, the concept being 

quantified and more particularly with the use to which the assertion is being put 

(for example, a casual remark opposed to a scientific report). These difficulties 

though are difficulties of translation, of deciding on the implied variation, not 

limitations of the method of representation. If PIDGIN were extended to allow a 
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variation to be explicitly stated then this could probably best be 

done by removing the ABOUT comparator and allowing the EQUAL, MORE and 

LESS comparators to take another parameter that specified the variation as a 

percentage. The present ABOUT comparator would then correspond to the 

EQUAL comparator with an explicit variation of 25. A single number as 

quantifier can be used to cope with the translation of "a", "an" and cardinal 

numbers: 

a man  1 MAN 

two men  2 MAN 

half an apple 0.5 APPLE 

In order to express averages, superlatives and fractions of groups the 

special relation modifiers MAX, MIN, and MEAN are introduced: 

The oldest person died. 

A PERSON <AGE <EQUAL =N YEAR <<OLD MAX> 

   ALL PERSON>> YEAR> 

 BECOME [DEAD] SELF. 

John is average height. 

JOHN <HEIGHT <EQUAL =N METRE <<TALL MEAN> 

 ALL PERSON>> METRE>. 

The average salary of men is twice that of woman. 

<DIV =N POUND <<SALARY MEAN> ALL MAN> 2>   

   POUND 

  < <SALARY MEAN> ALL WOMAN>. 

Over one third of the people in the world are hungry. 

<MORE <DIV ALL 3>> [HUNGRY] PERSON. 

It will be seen later that only certain relations may be modified by MAX, 

MIN and MEAN and these relations are those in which it is the quantity of the 

first actor that is of concern. Thus .the first example above may be read - there 

is a person such that his age is the maximum for all people and that person has 

become dead. In the second example the difference between this and: 

=N METRE <<TALL MEAN> JOHN>. 

should be recognised, the second suggests that John's height changes 

and it is currently average for John. 
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The third example states that the number of pounds of a 

woman's salary is that of a man's salary divided by two. The final example 

shows the other use of ALL within an expression to stand for the numeric 

quantity which is the total number of individuals making up the set described 

by the group actor. 

Other English quantifiers such as "the", "other", and "same" are not 

really quantifiers, in the PIDGIN sense, but directives to the analyser to find 

and substitute entity concepts for group concepts wherever possible. In the 

deep structure noun groups qualified by these determiners will usually be 

replaced at the analysis stage by the entity concept that they describe. 

Most of the other quantifiers reduce to the usual logical universal and 

existential quantifiers. Universal quantification is expressed in PIDGIN using 

ALL, and existential quantification by referring to a single member of a group 

concept. Some examples are given below: 

Croydon is near a city. 

( x) (x is a city ^ Croydon is near x). 

CROYDON <NEAR A CITY>. 

 

There are no five-legged cows. 

-( x) (x is five-legged ^ x is a cow). 

5 LEG <PART A COW> [NOT]. 

 

Something pleases Bill. 

( x) (x pleases Bill). 

A PERSON DO AN ACTION CAUSE BILL BECOME 

   [HAPPY] SELF. 

2.3C3. Attributes 

An attribute is a concept that corresponds to what Schank calls a 

picture-aider (PA) and what in English is a general term that can be used 

adjectivally. For example, "red book" is true of all those things which it can be 

said that they are red and they are books. A new attribute is defined in the 



 
120 

same way as a new nominal but by making it a concept for which 

the group concept ATTRIBUTE can be substituted: 

ALL COLOUR <SUB AN ATTRIBUTE> 

ALL RED <SUB A COLOUR> 

ALL PINK <SUB A RED>. 

However, it is difficult to build the attributes into a hierarchy that 

clearly defines their inter-relationships, as can be done for nominals. This is 

especially true for those attributes concerned with the feelings of living things 

and those concerned with the value that living things place upon objects. For 

example, Schank uses the attributes "comfortable" and "upset" (Schankl973b) 

without bringing in any mechanism for relating them together when it is clear 

that in order to use these attributes correctly the system must be able to do 

this. 

Psychologists have tried to determine these connections between 

attributes experimentally. C E Osgood (Carroll 1969) took 50 dimensions or 

axes named by different pairs of adjectives and then got college students to 

rate a large number of nouns along these axes. By factor analysis it was found 

that the 50 dimensions could be reduced to three, which could be roughly 

described as an evaluation, a potency and an activity dimension. There are a 

number of dimensions that do not readily fit this trichotomy, for example 

serious-humorous, but the experiments have been repeated many times in 

different ways with the same general conclusion. 

In PIDGIN all nominals can be rated along three dimensions which 

describe how "good", how "'strong", and how "active" that concept is. These 

three dimensions can be roughly related to the basic psycho logical processes 

of a concepts average reward value, the effort required to produce or resist it 

and the rapidity of movement associated with it. Thus it is assumed in PIDGIN 

that all nominals can be placed at some point within a three-dimensional 
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"semantic space" in which closeness implies closeness of some 

aspect of the concepts meaning. For example, some actual experimental 

averages bring the following concepts into the groups shown: 

(i) abortion, divorce, bad, feverish, crooked 

(ii) calm, chair, table, statue 

(iii) happy, patriot, leadership, brother, progress 

(iv) art, nice, food, sky 

Of course, any such table of groupings represent a single individual's 

view of the world. The point at issue here is whether it is possible to find some 

common method for finding such a table. The obvious way is to put together 

those nominal concepts that are associated with the same attributes. However, 

if there is no limit to the number of attributes and no connection between them 

then this method is of little use. In PIDGIN it is assumed that all nomina1s can 

be placed somewhere on a three-dimensional graph and that each area of that 

graph may be associated with some attribute in the sense that the attribute 

names that area of the graph. This has been incorporated into PIDGIN using 

two relations, FEEL and VALUE, and three dimensions GOOD, STRONG and 

ACTIVE rated (arbitrarily) between -100 and +100. So for examp1e: 

ALL HAPPY <SUB AN ATTRIBUTE <FEEL [100 GOOD 

       70 STRONG 

       80 ACTIVE]>>. 

ALL GLOOM <SUB AN ATTRIBUTE <FEEL [-80 GOOD 

     -50 STRONG 

     -50 ACTIVE]>>. 

ALL COMFORT <SUB AN ATTRIBUTE <FEEL[50 GOOD 

      20 STRONG 

      -20 ACTIVE]>>. 

Any attribute described as a feeling is concerned with the subjects own 

view of themselves (a subjective internal view), any attribute described as a 
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value is concerned with the subjects view of some object in the external world 

(a subjective external view) and all other attributes are concerned with 

describing the external world (an objective external view). This can be 

diagrammed as: 

 

2.3C4. Specifiers 

A specifier is a relation, or modified relation, followed by one or more 

actors and used in an actor structure to modify the nominal. 

A specifier corresponds to a relative term in English, it is a concept that 

relates or links together an actor with one or more other actors. The twenty 

relations (ten spatial relations and ten others) built into PIDGIN are described 

later in this part. 

New relations are introduced by using SUB to define their category. A 

new relation may be substituted for by one or more of the group-concept 

relation-describers RELATION, MEASURE, REFLEX, SYM, TRAN, LSUB, and RSUB 

with the following effect: 
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i) RELATION. If a concept, R, is a relation it can be used 

to connect two actors as A <R B> but it has none of the properties 

described below unless it is explicitly stated as having them by defining 

the relation as capable of being substituted for by the appropriate 

describer. 

ii) MEASURE. If a concept, R, is a measure then it is a relation and 

can be modified by the relmods MAX, MIN, and ME~. For example: 

ALL OLD <SUB A MEASURE>. 

ALL SALARY <SUB A MEASURE>. 

iii) REFLEX. If a concept, R, is reflexive it is a relation that is always 

true if used to link an actor to itself A<R A>. For example, everything is 

equivalent to and located at itself. 

iv) SYM. If a concept, R, is symmetrical then if A<R B> then this 

implies B<R A>. Only a relation between two actors can be 

symmetrical, an example is the relation NEAR. 

v) TRANS. If a concept, R, is transitive it is a relation such that if 

A<R B> and B<R c> then this implies A<R c>. 

vi) LSUB. If a concept, R, is left-substitutable then it is a relation such 

that if A<R B> then A can be substituted for B in any conception 

containing B, without altering the truth value of the conception. Further 

A is said to be the "category" of B. 

vii) RSUB. If a concept, R, is right-substitutable then it is a relation 

such that if A<R B> then B can be substituted for A in any conception 

containing A without altering the truth value of that conception, and B 

is said to be the "category" of A. The built-in SUB relation is of type 

RSUB. 
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The following describes each of the built-in relations and 

specifies its type. 

a. SUB (TRANS, RSUB) 

This is the basic relation for defining new entity and group concepts, 

including nominals, attributes and relations. A definition takes the form: 

entity <SUB A group> 

or ALL group1 <SUB A group2>. 

where this declares "entity" to be of category "group", and "group1" to 

be of category "group2". Because SUB is RSUB this implies that "group" may be 

substituted for "entity" and "group2" for "group1". Further, because SUB is 

TRANS if "group1" were the same as "group" then "group2" could be substituted 

for "entity". 

b. EQUIV (SYM, TRANS, LSUB, RSUB) 

This relation is used to specify that two entity concepts or two group 

concepts are inter-substitutable in any conception containing them without 

altering its truth value. 

c. INVERSE (SYM) 

This relation is unusual in that it is only used to relate two concepts 

that are themselves relations. It specifies that they are inverse relations 

(brother-sister, part-contain, father-child). For example, if: 

MARY <SISTER JOHN>. 

and BROTHER <INVERSE SISTER>. 

then JOHN <BROTHER MARY>. 
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If R1 <INVERSE R2> then if R2 is REFLEX then so is R1 if R2 

is SYM then so is R1 if R2 is TRANS so is R1 if R2 is LSUB then R1 is RSUB and if 

R2 is RSUB then R1 is LSUB. However if R2 is MEASURE R1 is not. 

d. OPPOSITE (SYM) 

This relation, like INVERSE, is used to relate two relations. It is defined 

as, if R1 <OPPOSITE R2> then R1 is the same type as R2 and if A<R1 B> is true 

then A<R2 B> will be false and vice-versa. For example: 

FAR <OPPOSITE NEAR>. 

NOTLEFT <OPPOSITE LEFT>. 

e. PART (REFLEX, TRANS) 

This is used to express the English notion of "part of", thus: 

A PISTON <PART AN ENGINE>. 

AN ENGINE<PART A CAR>. 

Therefore, because PART is TRANS: 

A PISTON<PART A CAR>. 

f. POSS (TRANS) 

Used to express the notion of "possession" (without any legal 

associations), thus: 

JOHN <POSS A DOG>. 

g. FEEL, VALUE 

These are used to relate concepts to the three-dimensional semantic 

space discussed in Part 3. FEEL is used to relate a THINKER to a point in the 

space or to define a concept as being that point. VALUE is used to assign an 

object some point in the space in order to express how some THINKER values 

that object. 



 
126 

Both relations take a single actor that may be one, or a 

band of two or three actors, either GOOD, STRONG, or ACTIVE, with a 

quantifier between -100 and +100. If any dimension is not defined (less than 

three actors) it is assumed to be zero but is free to vary, thus: 

ALL BEAUTY <SUB A RELATION <VALUE [50 STRONG -80 

ACTIVE>>. 

A VASE <BEAUTY 50 GOOD>. 

h. PRIORITY, CLASS (MEASURE) 

PRIORITY is used to assign a priority (between 0 and 100) to, or to 

discover the priority of, a user name (see Division 2.2.2C). This relation may 

only be used by a user with a priority over 90 or more. It is used when setting 

up the system in order to create a number of user names (or "passwords") so 

that the system can associate every user with a priority and thus assign an 

"importance" to anything that user tells the sys tem. 

CLASS is used to define the type of user - SYSTEM, GENERAL or USER 

(see Division 2.2.2C). 

i. LOC (REFLEX, SYM, TRANS) 

This relation corresponds to the LOC relation of Schank. It is used to 

express the location of one actor with respect to another. If a spatial relation 

(LOC, NEAR, FAR, ABOVE, BELOW, BACK, FRONT, LEFT, RIGHT, BETWEEN, 

DIST) relates two actors that match two objects in a current view then the view 

is used to answer questions about the objects. The spatial location of an object 

in a view cannot be altered by simply stating a new location but it is altered by 

using the TRANSFER act. 
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j. NEAR (SYM) 

NEAR means that the two actors are either at the same location or they 

are next to each other. Note that, unlike LOC, it is not transitive. 

k. ABOVE, BELOW, BACK, FRONT ,LEFT, RIGHT (TRANS) 

These can be used to express the three-dimensional relation ships 

between two objects (see IDENTIFY Part 2.3B5). The relations express the 

strict meanings of the words and so are not opposites of each other, for 

example:  

A    

 B   

 C D  

   E 

 A <LEFT B>. B <ABOVE C>. E <BELOW D>. are true. 

but C <RIGHT B>. D <ABOVE C>. are false. 

If the opposite relations (NOTABOVE, NOTBELOW ...) were defined in 

the general knowledge, then: 

C <NOTLEFT B>. D <NOTBELOW C>. would be true. 

l. BETWEEN 

This is used to express the idea that one actor is spatially between two 

others. The notion of numerically between is already built into the way 

quantifiers are handled (using a conjunction of MORE and LESS). The relation 

takes one argument which must be an unordered band of two actors, the 

symmetry of these is thus automatically built in: 
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LONDON <BETWEEN [PARIS NEWYORK]>. 

will match 

LONDON <BETWEEN [NEWYORK PARIS]>. 

m. DIST (MEASURE) 

This MEASURE relation is used to specify the distance between two 

objects. The distance can be specified in pattern units by using the concept 

UNIT, for example: 

5 UNIT <DIST [WPAWN BKING]>. 

n. The Relation Modifiers 

As well as the above twenty relations there are three relations modifiers 

(MAX, MIN, MEAN) built-in. These can be used to modify any relation of type 

MEASURE. One use for this facility is to be able to express the deep structure of 

comparatives and superlatives, for example: 

oldest  <<OLD MAX> =ALL PERSON> 

older than x <AGE <MORE =N YEAR <OLD x>> YEAR> 

old   <AGE <MORE =N YEAR <<OLD MEAN> ALL 

      PERSON>> YEAR> 

same age as x <AGE =N YEAR <OLD x>> 

young  <AGE <LESS =N YEAR <<OLD MEAN> ALL 

      PERSON>> YEAR> 

younger than x <AGE <LESS =N YEAR <OLD x>> YEAR> 

youngest  <<OLD MIN> =ALL PERSON> 

2.3D. Modifiers 

A complete conception may be modified in anyone of the thirteen 

different ways discussed below. 

a. Index 

This is an integer that uniquely identifies the conception. The index 

number modifier cannot be specified by the user for a PIDGIN assertion; it is 
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automatically assigned by the system as one greater than any 

previously used index. 

b. Author 

This is the concept associated with the user that created the 

conception. This concept can be thought of as the user's name, or password, 

that he must specify before he is allowed to use the system. Every user name is 

associated with a priority that is used to assign a relative importance to all the 

assertions made by the user with that name. Any conception that is created by 

PIDGIN is assigned the author concept SELF. 

c. Priority 

This is a number between 0 and one hundred that assigns a relative 

importance to the conception it modifiers. That is if one conception contradicts 

another the conception with the highest priority is considered correct. The user 

cannot specify any of these first three modifiers, index, author or priority, 

directly in a conception. The index is assigned automatically by the system, the 

author concept is specified once when the user first starts to use the system 

and the priority is already associated with the author. 

d. Truth 

 

Any conception may be modified as to its truth value, either TRUE or 

NOT. NOT is used to indicate that the conception it modifies is false, TRUE that 

is true. 
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e. Modal 

 

A conception may be modified as POSSIBLE, DEFN or neither. If a 

conception is POSSIBLE it is assigned a priority of twenty and will not be used 

to make deductions. A conception marked as DEFN is assigned a priority of 10 

greater than the priority associated with the author concept, this allows a user 

to create conceptions that can be used to check the consistency of later (non-

DEFN) conceptions asserted by the same user. 

f. Period 

 

This is used to specify any transitional aspect of the conception it 

modifies, that is, to specify that a particular phase or change is being 

mentioned. The possible modifiers can best be described by a diagram: 

 

The other modifier, REPEAT, is used to indicate that the action is an 

event that is repeated (for example, moving the legs during walking) and this 

repetition is an essential aspect of the complete conception. 

g. Manner 

i) Intent 
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An action may be modified by INTEND or ACCIDENT to 

indicate whether the subject of the action intended the specified action 

or the action took place and involved the subject. 

ii) Condition 

If the conception is modified by CAN the subject has not or will not 

necessarily perform the action but could perform it in the appropriate 

circumstances if required. If an action is modified by CAN then any 

action that matches that conception can be performed without any 

enabling conditions being required. 

iii) Disposition DISPOSED is used to mark those conceptions that 

express the idea of the subject being inclined to carry out the action 

from time to time, under the appropriate circumstances (for example, 

"John hunts lions", "Tabby eats mice"). 

h. Degree 

This specifier modifier allows adverbs to be incorporated in the deep 

structure, for example: 

<DEGREE SLOW> 

<DEGREE IMPRESSIVE> 

However, the meaning of these adverbs is not fully incorporated into 

the overall deep structure of the conception they modify; the DEGREE modifier 

merely provides a "slot" into which the concepts can be placed. This is an area 

in which PIDGIN could be extended to more fully incorporate the modification 

that an adverb has on its containing sentence. 
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i. Location 

This is the same specifier that is used to qualify actors. If an action is 

associated with a particular location then it is incorporated in the location 

modifier. Any action that has a time always also involves some location but it 

does not need to be specified in the modifiers. Conversely any action with a 

location is associated with a time though once again this does not need to be 

specified even though the location is included. This modifier corresponds to 

what is usually called an "adverbial clause of place" at the English level. The 

location specified is the location of the subject when the act of the action is 

performed. 

j. Time 

Time is specified as an absolute date (relative to 0 A.D.) and time. 

Many relative times such as "now", "yesterday" and "next week" can be made 

absolute if the time of the utterance is known. However, there are relative 

times such as "John's birthday", and "Christmas" which may not be capable of 

being made absolute because the information they contain is lost if they are 

replaced by anyone of the absolute dates to which they refer. This is another 

area where PIDGIN could be usefully extended in the way it handles adverbial 

modification. The current way that such relative times are handled is to specify 

the time as the actor that describes the relative time. However, this does not fit 

into the way in which absolute times are handled. 

Absolute time is specified as a number of years, months, days, hours, 

minutes and seconds, though they are not all required if the time is not known 

precisely, for example: 

<TIME [22 DAY 8 MONTH 1947 YEAR]> 

<TIME 1975 YEAR> 
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NOW is taken as the current date and time as known by the 

system. PAST is any time before (LESS) NOW and FUTURE any time after 

(MORE) NOW. The problem of how far in the PAST or FUTURE is resolved by 

always specifying the time NOW to the nearest second although often the past 

or future tense is used to signify before or after some more approximate period 

such as before or after today, or this year. 

k. Interval 

This modifier is only used if EVENT is also used. It gives the length of 

time of the complete EVENT (from START to STOP) in years, months, days, 

hours, minutes and seconds or some more approximate figure, such as: 

<INTERVAL [2 YEAR 6 MONTH]> 

That completes all the allowed modifiers for the conception. Thoughts 

may also be modified (except for WHILE) by the same modifiers, in which case 

the modifier applies to the complete thought. 

2.3 E. Combining Concepts 

Now that the concepts have been described it is necessary to consider 

how they are put together to form statements. The syntax of Section 2.1.1 

does not rule out, for example, combinations such as [SAD] TREE or 

A BEE TRANSMIT A THOUGHT A FLOWER A FLOWER2. 

These constructions are ruled out by the knowledge contained in the 

memory plus the rules for consistency. For example, the primitive knowledge 

might contain the conception: 

ANY THINKER TRANSMIT ANY THOUGHT ANY MINDI ANY MIND2. 
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The system will only add a new conception to the memory if 

either it has a priority of one hundred or the memory already contains a 

conception that matches it. This rule implies that the priority one hundred 

conceptions define the limits of all possible future combinations. Putting this 

another way it means that the system can only learn new particular examples 

of what it already knows. For example, the above conception rules out : A BEE 

TRANSMIT A THOUGHT A FLOWER A FLOWERI. unless BEE is defined as 

THINKER and FLOWER as MIND. This forces the user to define the categories of 

the concepts used before they can be combined into conceptions. Any concept 

can be defined initially as the category pf any other because the primitive 

knowledge will usually contain the conception: 

ANY THING BE. 

As the system is given more knowledge so the range of possible 

combinations is restricted by those of higher priority. For example, the high 

priority general knowledge will restrict the specialist knowledge and this will still 

further restrict the knowledge that the user may give the system. In this way 

meaningless combinations of words at the sentential level cannot get through 

to the deep structure because the analyser will not be able to create the 

corresponding statement. Further, the analyser can use this mechanism to help 

it choose between alternative deep structures when the sentence is ambiguous. 

Schank considers the problem posed by sentences such as: 

John eats a light bulb. 

With such sentences the analyser cannot create a deep structure 

because the dictionary entry for "eat" insists that only "food" can: be eaten and 

"light bulb" is not a food. Light bulb could be added to the list of concepts of 

type food but this would have undesirable consequences, for example, all 

questions concerning food would imply light bulb as a possibility and the 
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unusualness of the event would be lost. The solution is to add the 

complete conception to the dictionary as a new possible translation of eat. . The 

dictionary would then contain the equivalent of : 

Any person eat any food 

or John eats light bulbs 

When a new concept is defined it initially inherits all the possible 

combinations of its category concept. However, a new concept is usually 

distinguished because it differs from its category concept in some quality 

dimension. For example, "mare" is a subset of "horse" and it differs from 

"horse" in the "sex" dimension. Whereas, "horse" may have any sex the new 

category "mare" is, by definition, "female". This knowledge could be contained 

in the memory as: 

ANY [SEX] ANIMAL. 

ALL HORSE <SUB AN ANIMAL>. 

ALL MARE <SUB A [FEMALE] HORSE>. 

Here HORSE inherits from ANIMAL the possibility of being qualified by 

SEX (MALE or FEMALE) but when MARE is defined this possibility is excluded by 

explicitly stating its sex as FEMALE. To incorporate conceptual knowledge 

concerned not with a concepts defining qualities but with its typical properties 

the quantifier MOST can be used: 

ALL BAIL <SUB A [ROUND] OBJECT>. 

MOST [SMOOTH] BALL. 

that is, the concept BAIL is by definition round and is usually smooth. 

The fact that they are usually smooth does not prevent the system creating the 

structure [ROUGH] BALL but it may help the analyser to disambiguate a 

sentence in which the texture is not mentioned but in which a knowledge of the 

most likely texture would distinguish between possible translations. 

Finally, possible qualities can be specified: 
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MOST [WHITE] SNOW. SOME [YELLOW] SNOW. 

although they cannot be used during analysis. 

Entity concepts can only be combined with qualities which can be 

combined with their category concept. 

2.4 The PIDGIN Statement 

2.4.1 Assertions, Questions and Commands 

PIDGIN statements can be divided into three types, assertions, 

questions and commands. These three types are distinguished by certain 

aspects of their structure and by the preceding dialogue. Assertions usually 

convey information, questions elicit information and commands instruct the 

system to carry out some action. However, the practical handling of these three 

types is not quite this straight-forward; assertions may convey information 

already known by the system or contradict what the system already knows, 

questions may require a simple yes/no answer, require complex deductions to 

be performed or even convey information and commands may not be able to be 

obeyed. 

Assertions are indicated in Input PIDGIN by being terminated by a full-

stop (see Section 2.1.2). The terminating full-stop sets a global indicator to 

signify that the deep structure currently being evaluated is an assertion. Both 

assertions and questions are treated in a similar way. They are matched 

against the memory in order to try and find a matching statement. In the case 

of an assertion if a matching statement is found this means that the system 

already knows the information that the assertion contains, in the case of the 

question this means that an answer has been found. If an assertion matches a 

statement already in the memory then that statement must either be identical 

to the assertion, more explicit than the assertion or a contradiction of the 
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assertion. When checking for consistency of the complete assertion 

each actor in the assertion is separately checked against the world model. For 

example, the assertion: 

JOHN PASS A [WHITE] RAVEN SELF MARY. 

is contradicted by the state: 

ALL [BLACK] RAVEN BE. 

in the world model. 

At the PIDGIN-level when an assertion is evaluated it will either 

succeed or fail. If the user is working at the English level then the English-level 

driver program will translate this into a suitable explanatory English reply. At 

the PIDGIN-level the action taken is determined by the ABC PIDGIN-driver 

program, this will, typically, store the assertion in the memory if it succeeds 

and output it back to the user if it fails. The following table shows the possible 

typical responses at the PIDGIN level : Assertion input: 

i) No matching statement in memory 

  assertion stored in memory. 

ii) Matching statement identical 

  output assertion. 

iii) Matching statement more explicit 

  output statement. 

iv) Matching statement contradictory and same or lower priority 

  assertion stored in memory. 
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v) Matching statement contradictory and higher priority 

  output statement. 

Checking for consistency is a very important part of the way PIDGIN 

works. Rather than accept the assertions of the user, which can lead to 

inconsistencies arising, each one is checked with the current memory. Only if 

the assertion is consistent with the memory is it stored. This greatly aids the 

user because he is kept in contact with the contents and implications of the 

growing system. Of course the user must be allowed to store an assertion in 

the memory even if it is contradictory because he may wish to correct an earlier 

mistake (this can be done by using the DEFN modifier), and inconsistencies can 

arise, but this is preferable to having no checks. 

Questions are treated in a similar way to assertions. In Input PIDGIN a 

question is signified by terminating the statement with a question-mark (see 

Section 2.1.2). A question is typically a general assertion that retrieves a more 

explicit statement from memory, however, in the case of the "yes-no" question 

the question is as explicit as an assertion. The only difference in the way that 

the system handles the two is that if no matching statement is found the 

assertion is stored in the memory but the question is not. So the question 

response table is the same as the above assertion table except for the first "no-

match" case which, for a question, does not result in it being stored in the 

memory but some message, such as [I DONT KNOW.], being output instead. 

Questions may be about the working of the system itself. For example, 

"how" and "why" questions are concerned with planning and scheming (see 

Section 2.4.4) respectively. The system automatically adds assertions to the 

memory when it carries out a plan and a plan will generate new states. 

Therefore, questions concerning actions that have been obeyed can be 
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answered from the memory ("how" question from THROUGH sub-

actions and "why" questions from the states produced). Questions concerning 

future actions can be answered from the current scheme and plan. 

A command is a conception containing one of the action-acts with the 

concept SELF as subject and a time modifier of NOW. Unlike assertions and 

questions it does not cause the memory to be searched but it causes the ABL 

expression associated with the action-act to be evaluated. In Input PIDGIN a 

command is terminated by either a full stop or an exclamation-mark. The 

primary indicator of a command is a conception with SELF as subject. If the 

PIDGIN interpreter is given such a conception and the time modifier is NOW 

then it immediately evaluates the ABL expression associated with the act. This 

expression first checks that the command is enabled in the current memory. A 

command is enabled if either a matching conception has the modifier CAN or 

every ENABLE thought with a matching action has states that can be found in 

the current world model. If the command is enabled then the appropriate action 

is performed (see Division 2.3B), if not the command fails. After performing the 

appropriate action a check is made for any PRODUCE thought with a matching 

action part. All such thoughts that are found in the memory have their states 

added to the current world model. A conception with the form of a command 

but with a time modifier indicating the past is treated as an assertion (about 

some past command). 

A conception with the form of a command but with a time modifier 

indicating the future is called a suspended command and it is stored in a special 

part of SEM, suspended evaluation memory (see Segment 2.2.3Blb), with a 

reviver based on the time it is to be obeyed. 

The actual action performed by a command depends on the facilities of 

the complete system. For example, at one extreme the system may be 
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connected to a number of peripherals in the real world, cameras 

(PERCEIVE and IDENTIFY acts), 'arms' (MOVE and TRANSFER acts) and so on, 

and at the other extreme it may be connected to simply a single input/output 

terminal. In the later case all the commands must be simulated inside the 

computer in such a way that the PIDGIN system is presented with an 

environment similar to that which would be presented by the real devices. This 

later system is that used by Winograd's question-answering system. 

There are many types of sentence not covered by the above division 

into assertion, question and command, for example, jokes, greetings, 

exclamations, thanks and so on. This means that much of the subtlety of such 

sentence will be lost because the translator can only translate it to one of the 

three types provided. However, in the problem-solving environment in which 

PIDGIN is designed to work the information lost should not be relevant. Another 

difficulty is illustrated by the following example, if a headmaster says 

"The boy responsible will tell me the reason why he did it." 

then this can be taken as a hope by the staff, an assertion by the pupils 

and a command by the boy himself. It could also be taken in many other ways, 

such as a threat or a question. The way it is understood by each hearer 

depends on that hearer's world view, knowledge of the speaker and current 

world model. PIDGIN can handle some of the subtlety implied by this large 

number of sentences types by the use of more rules. For example, a threat can 

be treated as an assertion plus a rule that links such assertions to the 

possibility of the subject of the assertion harming the object. Such a rule would 

enable PIDGIN to deduce the possibility of harm but to recognise the first 

assertion as an example of a threat it would be necessary to define the 

meaning of the concept THREAT as any assertion for which there is a matching 

rule that implies the subject of the assertion may harm the object. 



 
141 

Another way that the PIDGIN system can be used is to run 

it in a mode that causes it to try to extend and improve its knowledge by asking 

the user questions. This can be done by taking any conception that is not fully 

modified and qualified. For example: 

John takes a book. 

 JOHN PASS A BOOK AN OWNER JOHN. 

is the source of the following questions, and many more: 

Which book? 

Who owned the book? 

When did John take it? 

How did John take it? 

Why did John take it? 

Questions can also be generated by forming hypotheses. A hypothesis 

is generated by taking a statement, making its concepts vaguer and checking 

the result for consistency with the current memory. For example: 

John takes objects. 

People take books. 

People take objects. 

The problem with allowing PIDGIN to generate such questions and 

hypotheses is to find some way of restricting them to the most likely 

possibilities. This requirement goes beyond the current scope of PIDGIN. 

2.4.2 Substitution Rules 

Matching is the most important basic process in the PIDGIN system as 

it determines conception equivalence, which determines what questions can be 

answered, what commands obeyed and what problems solved. This section 

describes all the rules used in the matching process. These rules are called 

substitution rules because they describe all the conditions under which one 

statement may be substituted for another. 
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Unlike most matchers, such as those of SNOBOL or 

PLANNER, PIDGIN does not match "blindly" but uses the semantic information 

available to limit the possible matches. Further, as all matches take place 

between two statements the matcher works with items that have limited syntax 

and fixed, known semantic relations. This enables an efficient implementation 

to be made. For example, the first item in a conception is always one of the 12 

acts (nine acts plus BE plus the two general acts). The system can therefore 

not only divide the memory according to this first item but each act can be 

associated with a different matching algorithm that takes into account the 

syntactic and semantic restrictions that the act imposes on the whole 

conception. Further, the semantics of actors and attributes suggests that they 

may be efficiently related by means of tree structures. Thus, although the 

memory is regarded throughout as a linear sequence that is scanned 

sequentially it can in fact be implemented as an interconnected network, similar 

to memory structures such as that of Quillian. The form of this network is not 

described, however, as it is regarded as an implementation detail that should 

play no part in the design of the system. The rigid specification of the deep 

structure ensures that an efficient implementation is possible but the details of 

this are left to the implementor (one possibility is discussed in Appendix I). The 

justification that is some times given for describing networks is because of their 

obvious analogy to the central nervous system. However, so little is known of 

the structure of nerve nets involved with such complex activities as language 

and problem solving that little appears to be gained from such conjectures. 

PIDGIN can be regarded and described in terms of networks but for the 

purpose of presenting it as a programming language it is simpler to think of it 

as a sequence of statements. 

The matching ability of PIDGIN centres on matching two actors 

together. This ability is available directly using the act IDENTIFY (see Part 
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2.3B5) which can be used to match actors or groups of actors with 

a group of actors called the view. The matcher is also used implicitly throughout 

the system, for example, to answer questions and to check for consistency. The 

implicit matching process always takes place between two statements and 

consists of three parts, the actor matcher, the modifier matcher, and the 

conception matcher which uses the other two. 

2.4.2A The Matcher 

The matcher takes a single statement and tries to find a matching 

statement in the memory using the substitution rules and the relations between 

the concepts. The single statement is called the picture and is typically a 

question and this is matched with each statement in memory in turn until either 

a successful match is found or the memory is exhausted and the match fails. As 

each statement in memory is examined it becomes known as the pattern or 

candidate, and is typically an assertion. 

If a successful match is made then a "fail-point" is set up in the 

matcher so that a later failure can return to the same point and continue 

searching. If the memory is exhausted and the picture is a conception then the 

matcher examines all the IF-rules for one with a matching header (the first 

conception of the rule). If there are no IF-rules that match or all matching IF-

rules fail then the complete match fails. If a matching IF-rule is found then a 

fail-point is set up and the rest of the IF- rule is evaluated to determine if the 

match is successful. 

This fail-point mechanism is also incorporated in PLANNER for a similar 

purpose. However, it is hoped that the complexity of a single conception 

compared with for example Winograd's PLANNER data-base patterns will enable 

a more efficient system to be 'set up because of the reduction in failure 
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backtracking. This follows from the fact that simpler patterns will 

match more often and so if one complex pattern is replaced by a number of 

simpler patterns each of which must be matched against the complete memory 

and each of which may involve a large number of backtracks then the complete 

process will take longer. For example, in Winograd's system to find "a large red 

cube" required the Micro-Planner commands: 

(THGOAL (#IS $?Xl #BLOCK)) 

(#EQDIM $?Xl) 

(THGOAL (#COLOR $?Xl #RED)) 

(THGOAL (#SIZE $?Xl #LARGE)) 

that is, first find a block, then check it is a cube, if not backtrack to find 

another block, then check it is red, if not backtrack to find another block, then 

check it is large, if not check for another colour and another block. This 

continual backtracking becomes even worse when the equivalent of a complete 

conception is considered. 

It is interesting to note that R. Schwarcz (1970) and R.F. Simmons 

described a similar problem with their Protosynthex III system and suggest a 

similar solution. With a large data-base these backtracking memory searches 

become increasingly slow because of the combinatorial explosion and Schwarcz 

suggests two possible ways of alleviating this: 

(i) "partitioning the data base into discourse units". 

In effect this means not looking at parts of the data-base because it is 

known that they do not contain the answer. This amounts to the system having 

some idea of where to look before it starts the search and the problem is how 

to order or to divide the data-base so that the questions that occur can make 

use of the ordering and division. PIDGIN goes a small step along this path 

because its syntax allows the system to partition on the subject nominal and 

the act. For example, it can divide the data-base into those conceptions 
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concerned with PERSON PASS, PERSON MOVE, PERSON TRANSFER, 

and so on. This is a graph-partitioned data-base which is strongly tree-

partitioned because of the structure of the concept relations. That is, PIDGIN 

could be implemented with a meaning structured data-base so, for example, to 

find all conceptions concerned with "CHILD MOVE" it need only look first at the 

THING-ANIMAL PERSON-CHILD concept structure and then in detail through 

just the CHILD-MOVE conceptions. The advantage of this system is that the 

nominal concept structuring automatically increases in complexity with data-

base size. The increased length of time required to search a larger data base 

should be offset to some extent by the finer partitioning resulting from the 

typical corresponding increase in the dividing of concepts. The extent to which 

one offsets the other has not been investigated by practical comparisons. 

(ii) "use a basic unit larger than the relational triple". 

Protosynthex, and to some extent Winograd's use of PLANNER, is based 

on a data-base unit consisting of three parts (relation plus two arguments). 

Schwarcz suggests that by increasing the size of the unit and thus reducing the 

number of sub-goals and the number of answers to each sub-goal the system 

would be quicker even though each individual comparison takes longer. He also 

states: 

"Thus the substitution of the Fillmore case structure for the structure of 

event triples would yield substantial benefits for natural language deductive 

question-answering systems." 

PIDGIN is based on Schank's case structure which is an improvement of 

Fillmore's (see Schank 1969b) because it is concerned with the conceptual deep 

structure not the surface syntax and also because it is designed with the 

computer in mind. 
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Although the PIDGIN matcher may be improved by the 

above techniques it is easier to understand if it is imagined that it searches the 

complete data-base for a match each time. If the statement is a thought only 

the corresponding thoughts need be examined (those with the same connector) 

and each one is matched by first comparing each corresponding conception and 

then comparing modifiers. If the statement is a conception only corresponding 

conceptions (those with the same act) need be examined and each one is 

matched by first comparing corresponding actors (subject, object, source and 

destination) and then comparing modifiers. This may involve recursively 

matching conceptions as the object of a conception may itself be a conception. 

When two actors are compared it is the reference of the picture actor concepts 

that are compared with the corresponding concepts of the pattern actor. The 

reason for this is described later. 

If the matcher finds a match then the binder (see Division 2.4;2D) is 

used to make the pattern concepts the reference of the corresponding concepts 

of the picture statement. 

2.4.2B Actor Matching 

The essential point about matching two actors is that not only do 

identical actors match but if the picture is substitutable for the candidate then 

they also match. This division describes when one actor is substitutable for 

another. 

2.4.2B1. Combinations of Actors 

An actor may be a single actor or a band or class of actors. When 

matching two actors there are nine possibilities all of which, except the last, 

recursively call the actor matcher: 
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i) Picture actor is a band, candidate a band (conjunction 

conjunction) . Each member of the picture band is matched against the 

candidate band and must match at least one member. A complex case 

is illustrated by the following example: John, Bill and Jill went bowling. 

Did three people including two men go bowling? The above procedure 

would succeed with this example. Note that the question is ambiguous, 

it may mean exactly or at least the numbers specified. The two 

interpretations result in different deep structures, either EQUAL or 

MORE being used as the quantifier. 

ii) Picture is a band, candidate a class (conjunction-disjunction). The 

complete picture band must match every member of the class. 

iii) Picture is a band, candidate a single actor (conjunction actor). 

Every member of the band must match the single actor. 

iv) Picture is a class, candidate a band (disjunction-conjunction). At 

least one member of the class must match the complete band. 

v) Picture is a class, candidate a class (disjunction-disjunction). 

Every member of the picture class must match at least one member of 

the candidate class. 

vi) Picture is a class, candidate a single actor (disjunction-actor). At 

least one member of the class must match the actor. 

vii) Picture is an actor, candidate a band (actor-conjunction). The 

actor must match at least one member of the band. 

viii) Picture is an actor, candidate a class (actor-disjunction). The actor 

must match all the members of the class. 
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ix) Picture is an actor, candidate an actor (actor-actor). 

The quantifier, attributes, specifiers and nominals must match as 

described below. Nested combinations of the above cases can be 

matched using the above rules. Thus the following two questions would 

succeed: 

(Two boys and three girls)or(two girls and three boys) went 

bowling. 

Did five people go bowling? 

Did at least two boys and at least two girls go bowling? 

A single actor has the form (Input PIDGIN): 

quantifier [attributes] nominal specifiers 

therefore to match two actors involves matching four parts. The first 

part matched is the two nominals, they match if and only if: 

i) they are the same concept or either is in the EQUIV relation to the 

other. 

ii) the picture nominal is substitutable for the candidate nominal (see 

Part 2.3C4 for an explanation of concept substitutability). 

iii) the candidate nominal has the quantifier ALL and is substitutable 

for the picture nominal. 

If this comparison is successful the other three parts are matched in 

the order quantifier, attributes then specifiers. 

Any world model state containing one of the nominals quantified by ALL 

may be used in order to check the general attributes and specifiers of that 

nominal. 
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2.4.2B2 Quantifier Matching 

Each quantifier can be an expression, number, number concept, 

comparison or approximation. If it is expression it is evaluated, if possible, and 

the following table specifies the way in which the two quantifiers are then 

compared.  

   Candidate  

  C <MORE C> <LESS C> 

 P P=C fail fail 

Picture <MORE P> P<C PC fail 

 <LESS P> P>C fail PC 

If a number is specified as approximate (using ABOUT) then the 

number is allowed to vary by 25%. The following examples illustrate these 

rules: 

Picture Candidate Result 

<MORE 2> <EQUAL 3> succeed 

<MORE 30> <MORE 40> succeed 

<ABOUT 10> <EQUAL 12> succeed 

<ABOUT 10> <EQUAL 14> fail 

<EQUAL 5> <MORE 4> fail 

<MORE 5> <MORE 4> fail 

If one of the quantifiers contains an expression it is evaluated to a 

number before the comparison, if it cannot be evaluated because it contains a 

number concept that does not have a number as its reference then the match 

fails. However, if two expressions are being compared and one or both cannot 

be evaluated then the expressions themselves are matched. To make the 

comparison the order of the arguments of both ADD and MULT is ignored and it 
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is sufficient for the two expressions to use the same number 

concepts in the same places but not necessarily the same number concepts in 

both expressions. Thus: 

<MULT X <ADD 2 X>> 

 succeeds with <MULT <ADD Y 2> Y> 

 but fails with <MULT X <ADD 2 Y>> 

Also a number concept in the picture will match any self-contained 

expression (an expression containing no number concept used outside that 

expression), thus in the limiting case a picture quantifier consisting of a single 

number concept will match any expression, for example: 

the picture  <MULT A B> 

will match  <MULT <MULT X X> <MULT Y Y>> 

2.4.2 B3. Attribute Matching 

An attribute is a group concept being used to qualify a nominal. They 

are matched in the same way as nominals except that attributes always occur 

in an unordered band. 

For example, COLOUR may be defined as RED, BLUE and GREEN, and 

RED as SCARLET, ROSE and PINK, then if the picture is PINK the candidate 

must be PINK, if the picture is RED the candidate must be PINK, ROSE, 

SCARLET or RED. 

The order of the attributes is not significant. If a picture attribute does 

not match the candidate it is checked with the world model states that have a 

matching nominal and the quantifier ALL. If is holds in the world model then the 

comparison continues otherwise it fails. 



 
151 

2.4.2 B4. Specifier Matching 

A specifier is a relation between two (or more) actors, it takes the 

form: 

(i) <relation actor> 

or (ii) <<relation relmod> actor> 

The relations are matched first, in the same way as two nominal 

concepts. 

If either relation has the second form above (where relmod,. is MAX, 

MIN or MEAN) then both relations must have the same form and the same 

relmod. If one relation is the INVERSE (see Segment 2.3C4c) of the other then: 

if the picture actor has the form:- A <R1 B> 

and the candidate the form:- C <R2 D> 

then A must match D and B must match C for the two actors to match. 

If a picture specifier does not match it is compared with the world model states 

that have a matching nominal and the quantifier ALL, if a match is found the 

comparison continues otherwise it fails. 

2.4.2 C. Modifier Matching 

The modifier is checked last. If two modifiers do not match the 

conception may still be a satisfactory answer to the question. There fore a note 

is kept of the conceptions that match except for their modifiers and if no other 

match is found then they are used. However, if the only difference is the truth 

modifier of the two conceptions then they are regarded as matching and the 
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match succeeds with the question denied (or the assertion 

contradicted). The following rules are used: 

i) Index: not checked 

ii) Author: not checked 

iii) Priority: not checked 

iv) Truth: see above 

v) Period: the two periods are matched like two attributes, if the 

picture is EVENT it will match any candidate period, other wise they 

must be the same. 

vi) Manner: must be the same, except that if the picture is CAN the 

candidate will match if no manner is specified. 

vii) Degree: the degrees are matched by the specifier matcher. 

viii) Location: the location specifier of a complete conception takes the 

same form as the location specifier of an actor and is matched in the 

same way. 

ix) Time: this is matched by the specifier matcher. The time may 

consist of one or more actors each of which specifies the number of 

those time intervals, the accuracy of the result is taken as being 

specified by the smallest time interval used. The candidate must be as 

accurate or more accurate then the picture, for examp1e: 

Picture <TIME [2 MONTH 1976 YEAR]> 

matches <TIME [3 DAY 2 MONTH 1976 YEAR]> 

but not <TIME 1976 YEAR> 
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x) Interval: this is only specified if the period EVENT is 

specified. The interval is specified as one or more of a number of time 

intervals. The two are matched in the same way as the time modifier 

with the same rules as regards the accuracy of the interval. 

2.4.2D Binding Statements 

If a picture matches a candidate then the references of all the concepts 

of the picture are altered to be the corresponding concept of the candidate. This 

process is called binding. For example, if the assertion candidate: 

JOHN PASS BOOK SELF BILL. 

is matched by the question picture: 

JOHN PASS AN OBJECT SELF BILL? 

then the concept OBJECT in the picture will have its reference altered to 

BOOK by binding. 

Subscripted concepts may be used so that the same concept may take 

different references, for example, matching the question: 

A PERSON1 PASS AN OBJECT A PERSON1 A PERSON2? 

will bind PERSON1 to JOHN, OBJECT to BOOK and PERSON2 to BILL. If 

binding two statements would cause a concept (or one subscripted concept) to 

take more than one reference then the binding fails. Matching and binding 

occur in four circumstances: 

i) When answering questions, this may involve evaluating associated 

IF-rules. 

ii) When problem solving certain connections between conceptions 

(thoughts) are checked to determine what can be done. 
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iii) Consistency checking, this involves question-

answering. 

iv) Command execution, this involves checking for certain 

connections (for example, PRODUCE and ENABLE thoughts.) 

These four circumstances can be reduced to two types of matching and 

binding, question-answering and connection checking. These two differ slightly 

in the way they are handled and they are described separately below. 

a. Question-Answering 

At the top-level conceptions are obtained directly from the user. If a 

question is asked a matching assertion is looked for in the memory and if found 

the information bound back into the question is used as the basis of the reply. 

This means that at the top-level the concepts have references that are 

determined by the questions that have been asked. For example: 

Who took the book? 

A PERSON PASS BOOK A PERSON2 SELF? 

Might leave PERSON bound to JOHN (that is, JOHN as the reference of 

the concept PERSON). If the next question is: 

Who took the money? 

then if the same concepts are used the question generated will be 

asking if JOHN took the money. This problem is overcome by clearing all the 

concepts in each question before it is matched. A concept is cleared by making 

its reference equal to itself. An assertion in the memory may be associated with 

a rule (by the IF connector). If such an assertion matches a question then the 

rule must be evaluated before the question can be answered. Evaluating the 

rule may result in secondary questions being matched and these in turn may 

invoke further rules. The following sequence of steps describes the process of 
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matching, binding and invoking a rule in a way which prevents two 

rules with a common concept from interfering with each other: 

i) If the first conception of the rule (the header) matches the 

question then 

ii) all the actors in the header are bound to their corresponding 

actors on the question, this is called forward binding and it is the only 

place that information goes from a high level (the user is the top level) 

to a lower level then 

iii) all the concepts in the rule except for those altered by step (ii) 

have their reference set equal to themselves (they are cleared), then 

iv) the rule is matched, this may involve further question-answering 

and rule processing. When comparing a rule question with the memory 

only conceptions with a priority greater then 20 are considered (see 

Segment 2.3De) 

v) the references of all the concepts in the header are made the 

references of the corresponding concepts in the question (back ward 

binding, information is being carried back to the user) then 

vi) all concept references altered by the above steps, except for those 

that occur in the question itself, are reset to their value before step (i). 

The above steps are analogous to function application in many 

programming languages, step (ii) corresponds to passing the input parameters 

into the function body, step (iii) to setting the local variables to some initial 

value, step (iv) to executing the function, step (v) to returning the results and 

step (vi) to resetting local variables to their previous values. The above steps 

are also similar to the pattern-directed procedure invocation in PLANNER, but 
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they can better be thought of as forming a meaning-directed rule 

invocation. The following example illustrates the above steps: 

1. A PERSON <EARN <SUB <MULT H R> T>POUND> 

2. IF THE PERSON < WORK = H HOUR> 

3 . AND THE PERSON <RATE = R POUND> 

4 . AND THE PERSON <TAX = T POUND> 

5. JOHN <EARN =X POUND>? 

i) Conception 1 matches question 5. 

ii) PERSON in 1 is bound to JOHN in 5, i.e. the input parameter is 

passed. 

iii) H, R and T are cleared, i.e. locals initialised. 

iv) The rule (lines 2, 3 and 4) is matched to find HOURS H, RATE R and 

TAX T for JOHN, answering these questions may involve using other 

rules, i.e. function execution. 

v) Conception 1 is bound into 5, the expression is evaluated and the 

result made the reference of X, the result is returned. 

vi) PERSON, H, Rand T are reset, so their reference is the same as 

before step (i), i.e. locals are reset. 

b. Connection Checking 

This is similar to question-answering, consider: 

1. A PERSON <POSS AN OBJECT> 

2. ENABLE THE PERSON PASS THE OBJECT SELF A PERSON2. 

3. A PERSON PASS AN OBJECT SELF A PERSON 

4. PRODUCE THE PERSON2 <POSS THE OBJECT> 

These thoughts give information used when a command is obeyed and 

when problem solving, for example: 

5. JOHN PASS A BOOK SELF BILL. 
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will match conception 2 and then the following occur: 

i) conception 2 is bound to 5. 

ii) the conception 1 is matched, in this case 

JOHN <POSS THE BOOK>. 

is checked. 

iii) any concept whose reference is altered by steps (i) of (ii) is reset to 

its value before step (i). 

A similar series of steps occurs when matching 5 with the PRODUCE 

connection except that the conception matched at step (ii) is treated as a 

question for ENABLE and as an assertion for PRODUCE. 

2.4.3 Deduction 

The last section has described how IF-rules are invoked if a question 

cannot be answered directly from the memory. An IF-rule is an explicit 

statement of a deduction that can be made. It is based on the rule of modus 

ponens, namely given as premises a conditional proposition and the antecedent 

of that conditional, the consequence of the conditional may be drawn as 

conclusion. For example, given P ->Q and P,Q may be deduced, or in its 

PIDGIN form given Q IF P and P,Q may be deduced. This is also the method of 

deduction used by PLANNER in the form of goal-directed consequent theorems. 

As well as this explicit deduction there is also a form of implicit 

deduction that occurs during matching in PIDGIN. All of this implicit deduction 

must be done explicitly in a system such as that of Winograd because the 

programming language used as the deep structure was not restricted to handle 

only those patterns required by the deep structure of language. It is this 
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implicit deduction that justifies the phrase "meaning-directed" as 

applied to PIDGIN's evaluation as opposed to the "pattern-directed" evaluation 

of PLANNER. The following simple example illustrates implicit deduction. 

Consider the deduction: 

Fido is a dog. 

All dogs are animals. 

so 

Fido is an animal. 

In Micro-Planner this becomes: 

(THASSERT (DOG FIDO)) 

(DEFPROP THEOREMI 

 (THCONSE (X) (ANIMAL $?X). 

  (THGOAL (DOG $?X))) 

THEOREM) 

(THGOAL (ANIMAL FIDO) (THTBF THTRUE)) 

It can be seen that explicit deduction is required. In PIDGIN it 

becomes: 

FIDO<SUB A DOG>. 

ALL DOG<SUB AN ANIMAL>. 

FIDO<SUB AN ANIMAL>? 

Because the SUB relation is part of the basic system it is possible to 

define it in such a way that an assertion using .SUB causes the information to 

be stored in a way which may be efficiently utilised later (probably in some 

form of tree structure). Thus when the question is asked it can be answered 

directly from this structure with out needing to search the memory. Further, 

this information can be used whenever a question involving the concept 

ANIMAL is matched against an assertion containing the concept FIDO, for 

example: 

JOHN PASS FIDO SELF BILL. 

JOHN PASS AN ANIMAL SELF BILL? 
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This last question can be matched directly with the 

assertion after making the implicit deduction that Fido is an animal. Implicit 

deduction cuts down the amount of backtracking required to solve a problem 

especially when the conceptions involved are complex. However, there comes a 

point when it becomes more convenient to use explicit deduction. The following 

examples illustrate this. a. Example 1 The relation AUNT can be defined from 

the relations PARENT and SISTER by means of the rule: A WOMAN <AUNT A 

PERSON> 

IF THE WOMAN <SISTER A PERSON> 

. AND THE PERSON2 <PARENT THE PERSON>. 

Then whenever the relation AUNT is used the above rule can be applied 

to test if the relation is true by trying to find a third person who is the sister of 

one and the parent of the other person. For example, if: 

JILL <SISTER BILL>. 

BILL <PARENT JOHN>. 

Then if the question: 

JILL <AUNT JOHN>? 

is matched against the memory a search will first be made for a 

conception that matches directly, if none is found then the IF-rules are 

searched. In the above case the IF-rule does match (assuming BILL and JOHN 

are PEOPLE and JILL is a WOMAN) and the question is forward bound into the 

rule. Note that the rule specifies that only WOMAN can be related to PERSON by 

the relation AUNT. This stops the system from trying the rule if the first person 

is not a WOMAN and thus it implicitly asserts that all AUNTS are WOMAN. After 

matching and binding the header the body of the rule is matched. The body of 

the above rule is a conjunction of two conceptions. Matching involves both of 

these conceptions, both must successfully match the memory for the complete 

rule to succeed. However, it is not clear in which order the conceptions should 
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be matched. The most straightforward way is to match them in the 

order in which they occur but it will be shown below that in some cases this can 

be extremely inefficient. In this case the rule to be matched consists of the two 

questions: 

JILL <SISTER A PERSON2>? 

A PERSON2 <PARENT JOHN>? 

Both questions contain two actors whose nominals are a group and an 

entity concept. The most efficient to match first is the question containing the 

group concept which has the least number of concepts that can be substituted 

for it. In this case the two group concepts are the same so the next step in 

trying to choose the most efficient order would be to estimate the average 

number of PERSON in the SISTER relation as opposed to the average number of 

PERSON in the PARENT relation. At this point the calculation of the most 

efficient order is becoming as lengthy as the search itself and so they are 

matched in the order they occur. With large data-bases and long search times it 

would probably become more efficient to spend longer on the estimate of the 

best order of evaluation and to do this some way of maintaining the necessary 

statistics would need to be developed. The first question matches the memory 

and PERSON2 is bound to BILL. The second question will then succeed. Finally, 

WOMAN, PERSON and PERSON2 (all the concepts not in the original question 

that have had their reference altered) are reset and the original question 

succeeds. If the question had been: 

Who is John's aunt? 

A WOMAN <AUNT JOHN> ? 

then this question would also have matched the IF-rule but the two 

conceptions of the rule would then become: 

A WOMAN <SISTER A PERSON2>? 

A PERSON2 <PARENT JOHN>? 
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and in this case it is clear that it is better to match the 

second question first. In general the following rules give a good indication of 

the best order: i) match the conception with the least number of group 

concepts first. If this does not give an unique conception then ii) match the 

conception with the most number of more specific group concepts first. . If a 

concept, A is more specific than a concept, B, then B can be substituted for A. 

For example, if the group concepts involved in the conceptions are: 

1. ANIMAL ANIMAL 

2. PERSON ANIMAL 

3. PERSON DOG 

then the order of matching becomes 3, 2, 1 because PERSON and DOG 

are more specific then ANIMAL. That is, (1) comes last because its group 

concepts are the least specific (2) comes next because one of its concepts is 

more specific and (3) comes first because two of its concepts are more specific. 

If this does not give an unique conception then iii) match in the order they 

occur in the rule. For the case of the above two questions the second. should 

be matched first (rule (i». This then gives the question: 

A WOMAN <SISTER BILL> ? 

and this binds WOMAN to JILL. Finally, PERSON and PERSONZ (all the 

concepts not in the original question that have had their reference altered) are 

reset and the original question succeeds with WOMAN backward bound to JILL. 

The answer can then be framed from the changes that have occurred to the 

group concepts in the question. If there have been no changes (or no group 

concepts) then the answer is "Yes" if the question succeeds and "No" if it fails. 

Other wise the answer is constructed from the changes, in this case a suitable 

answer would be: 

Jill. 



 
162 

b. Example 2 

The following rule calculates the number of sub-parts of a part. This is 

followed by a detailed description of its use for an example which involves the 

rule being used recursively. 

<MULT M N> OBJECT <PART OBJECT3> 

IF =M OBJECT <PART AN OBJECT2> 

AND =N OBJECT2 <PART AN OBJECT3> 

5 FINGER <PART HAND>. 

1 HAND <PART ARM >. 

2 ARM <PART MAN >. 

=X FINGER <PART MAN > 

1 The memory is searched for a match to the question but none is 

found so the IF-rules are searched and a match is found binding OBJECT to 

FINGER and OBJECT3 to MAN. The rule is then matched and the first conception 

matches binding M to 5 and OBJECT2 to HAND. The question: 

=N HAND <PART A MAN>? 

is then asked causing the IF-rule to be used recursively (because the 

question cannot be matched with any conception in the memory). The first 

conception of the rule then becomes: 

=M HAND <PART AN OBJECT2> ? 

and th1s matches and binds M to 1 and OBJECT2 to ARM. The second 

conception then becomes: 

=N ARM <PART MAN>? 

and this matches and binds N to 2. The rule is then complete and the 

expression can then be computed giving 2 which is made the reference of N. All 

the other changed concepts are reset to the reference they had on entry to the 

rule. The first level use of the rule is then complete and the expression can be 

computed (M has reference 5 and N 2) giving 10 which is made the reference of 

X and all the other concept reference changes are reset. The original question 
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thus succeeds leaving the number concept with the reference 10. 

This can be used as the basis of the reply: 

10 

2.4.4 Problem Solving 

The problem solving ability of PIDGIN is derived directly from the deep 

structure. Problems are typically solved with a computer by writing a program 

using the usual programming language features such as declarations, 

assignments, goto's, labels, looping and so on. If these were incorporated into 

PIDGIN much of its potential for answering questions about its own structure 

and the ability to teach it how to solve problems conversationally would be lost 

because such programming features do not combine easily with the linguistic 

deep structure. The problem is what features can be added to PIDGIN to take 

the place of these programming language features that will fit easily into the 

over all linguistic framework and yet still provide a "programming" type of 

problem-solving ability. 

People use English to teach other people how to solve problems. This is 

done by explaining what situations to avoid, what types of situation to aim for, 

rules for recognising both situations and procedures for avoiding and achieving 

them. All this information can vary from the explicit rule ("Avoid...!") and 

procedure ("Always do this and this and this") to the vague rule ("Look out for 

something like...") and procedure ("It sometimes might help to..."). This 

section describes how this type of information can be incorporated in and used 

by PIDGIN. The way this is done can in some ways be regarded as the 

1ingui~tic equivalent of the techniques used by General Problem Solver 

(Newell, 1961a and 1961b). 
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The basic idea is to use actions to reduce the difference 

between the current state and the desired state. But, unlike GPS, PIDGIN works 

within a particular linguistic framework that guides and improves the whole 

strategy. This is possible because of the large amount of knowledge contained 

in a conception in the form of its potential associations through memory 

compared to the sparse logical framework used by GPS. 

Two problem solving techniques are used by PIDGIN, called scheming 

and planning. Scheming is the name given to the operations necessary to form 

a scheme and planning to those necessary to form a plan. A scheme is a 

sequence of states leading to the desired state and a plan is a sequence of 

actions leading to a state within a scheme (possibly the desired state). In 

anyone problem description there is one current desired state (for example 

checkmate in chess) and a scheme is a description of some of the intermediate 

states that it is thought necessary to reach before the desired state can be 

reached. When problem solving the first thing done i3 to form a scheme. This 

will consist of the desired state preceded by zero or more states that it appears 

necessary to achieve, in the order given, before the desired state can be 

reached. Once a scheme has been found a plan can be made, this will consist of 

a sequence of actions that should achieve the first state in the current scheme. 

Finally, the first action will be performed; this will change the world model. If 

the environment reacts to the action (for example the opponent makes a move 

in chess) then both the current plan and scheme may need to be reformulated 

before carrying out the next action. 

2.4.4A Notation 

Before describing the problem solving technique in more detail it is 

necessary to define a number of terms: 
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A state is a conception consisting of one subject actor and 

the act BE. 

A current state is one that can be found in the memory. 

The world model is all the current states. 

A feeling is defined using a specifier with the FEEL relation. 

A positive (negative) feeling is a GOOD, STRONG and ACTIVE (BAD, 

WEAK and PASSIVE) one. An actor has a positive (negative) feeling if it is 

qualified by the FEEL relation and the total of the co-ordinates specified is 

positive (any co-ordinate not specified is assumed to be zero) (negative). One 

feeling is more positive (negative) than another if the total is greater (less) 

than the other. 

The feeling (of PIDGIN) is the (one) feeling currently associated with 

SELF (the PIDGIN system) in the world model. 

A positive (negative) state is one that is associated by a thought with a 

positive (negative) feeling of the PIDGIN system. 

The desired state is the most positive state. 

An enabled action is an action that is enabled by the current world 

model (via the ENABLE connector or CAN modifier). 

An action is positive (negative) if it produces a positive (negative) 

state. 

A state is short-term positive (negative) if it enables a positive 

(negative) action. 
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A state is a long-term positive (negative) if it suggests a 

positive (negative) state. 

The final state is the desired state and it terminates the problem. 

Similarly the final action is the action that leads to the final state and the short 

and long term final state and action are similarly defined. 

A final world is a world model that contains the final state. 

A positive (negative) world is a world model containing the positive 

(negative) feeling. 

A step consists of obeying one enabled action. This results in a new 

world model. 

A possible world is a world that can be reached from the world model 

by one or more steps. 

The uncontrollable future consists of all the possible worlds that can be 

reached solely by steps in which the subject is not SELF (it being assumed that 

if the subject is SELF then the step is controllable). 

A positive (negative) scheme is a sequence of positive (negative) 

states. 

A practical scheme is one in which the first state is suggested by a 

state in the current world model and that state suggests the next state in the 

scheme and the last state of the scheme is a final state. 

A positive (negative) plan is a sequence of positive (negative) actions. 

A practical plan is one in which each action produces a world model that 

enables the next action in the plan and the first action in the plan is enabled by 
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the current world model and the last action produces a state in a 

practical scheme. 

2.4.4B. Scheming and Planning 

Scheming involves producing a practical positive scheme and planning 

involves producing a practical positive plan. A scheme is generated by: 

SELF COGITATE A SCHEME. 

 

and a plan by: 

SELF COGITATE A PLAN. 

 

Only one scheme and one plan may be actively in use at anyone time. 

They are called the current scheme and plan and are the reference of the 

concepts SCHEME and PLAN. If there is no current scheme (SCHEME is clear) 

then the second command above must generate a plan that leads to a final 

world. 

The way in which a scheme and a plan are generated will be described 

by means of examples. 
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a. Example I - Monkey Puzzle 

 

 

The problem is how can the monkey reach and eat the banana. 

Monkeys can solve this problem, can PIDGIN? The following statements 

describe the problem: 

1. Bananas are food 

 

2. PI, P2 and P3 are places. 

3. PI is below the banana, P2 at the box and you are at P3. 

4. Eating makes you feel good. 

5. Standing on the box under the banana enables you to eat it. 

6. Standing by the box enables you to get on it. 

7. You can move the box from place to place. 

B. What do you do? 

This description of the problem must first be translated into PIDGIN as 

follows: 

1. ALL BANANA <SUB A FOOD>.. 

 

2. P1 <SUB A PLACE>. P2 <SUB A PLACE>. P3 <SUB A PLACE>, 

3. P1 <BELOW BANANA>. BOX <LOC P2>. SELF <LOC P3>. 

4a. SELF TRANSFER A FOOD A PLACE MOUTH.. 

b. CAUSE SELF BECOME SELF <FEEL 100 GOOD>. 

5a. SELF <ABOVE BOX <BELOW BANANA>> 

b. ENABLE SELF TRANSFER BANANA A PLACE MOUTH. 

6a. SELF <LOC BOX> 

b. ENABLE SELF TRANSFER SELF A PLACE 

A PLACE2 <ABOVE BOX> 

c. PRODUCE SELF <ABOVE BOX>. 
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7a. BOX <LOC A PLACE> 

b. ENABLE SELF TRANSFER BOX A PLACE A PLACE2 

c. PRODUCE BOX <LOC THE PLACE2> 

d. AND SELF <LOC THE PLACE2>. 

8a. SELF [CAN] TRANSFER SELF A PLACE A PLACE2 

 

b. PRODUCE SELF <LOC THE PLACE2> 

The problem is how to reach the desired state from the current world 

model. First a scheme is constructed by: 

SELF COGITATE A SCHEME. 

This command directs the system to formulate a scheme. The first step 

is to look for all occurrences of the final state. This will be a suggested state, a 

produced state or, as here, a caused BECOME action. 

If the only occurrence is a suggest state then this is set up as the first 

step of the scheme and the search is repeated with that state as the required 

one. Otherwise the action producing or causing the state is examined and a 

search made for enabling states and causing actions. In this case the action 

(4a) matches 5b and this is enabled by 5a. The enabling state (5a) becomes 

the first state of the scheme because if it is reached the final desired state can 

be reached (by action 4a). 

 

This procedure is repeated with this enabling state taking the place of 

the final state (that is, the enabling state is set up as a sub-goal leading to the 

final goal). This state (5a) says that SELF must be ABOVE the BOX and the BOX 

must be BELOW the BANANA. But the BOX is not BELOW the BANANA therefore 

this state must be reached before the scheme is complete. Also SELF is not 

ABOVE the BOX so this state is also added to the scheme. 

This final sub-goal SELF <ABOVE BOX> has been generated by splitting 

the complex conception (5a) into two sub-goals. It matches the state at 6c 
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which in the same way adds SELF <LOC BOX> (6a) to the scheme. 

This matches the state 8b and the scheme is complete because the action that 

produces it has the CAN modifier and so is permanently enabled. This is the 

first time in the scheming that an enabled action has been found. When this 

happens the scheme is complete and practical because it leads from the current 

world to the final world. Scheming is also terminated if all the outstanding 

states required are in the world model. The complete scheme is: 

[SELF <LOC BOX> 

BOX <BELOW BANANA> 

SELF <ABOVE BOX> ] 

Using this scheme the systems must next construct a plan for reaching 

the first state. This is done by the command: 

SELF COGITATE A PLAN 

A plan is constructed by searching for an action that produces the first 

state, this is found (action at 8a) and the plan is complete because the one 

action leads from the current world model to the one required in a single step. 

The plan is: 

 

SELF TRANSFER SELF P3 BOX. 

 

If this is carried out by: 

SELF DO THE PLAN. 

 

then the first state of the scheme will be deleted and the state: 

SELF <LOC BOX>. 

 

will be added to the world model by PRODUCE thought 8. The next plan 

will lead to the state BOX <BELOW BANANA> and as P1 <BELOW BANANA> this 
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is the same as BOX <LOC P1> using the systems built in knowledge 

that BELOW specifies a location and LOC is symmetrical. This state can be 

reached by the one step plan: 

SELF TRANSFER BOX P2 P1. 

 

which when carried out leaves SELF <LOC P1> as well as the BOX. As 

SELF <LOC BOX> (LOC is transitive and symmetrical therefore SELF <LOC PI> 

and BOX <LOC PI> implies SELF <LOC BOX> ), the final state of the scheme 

can then be reached by the one step plan: 

SELF TRANSFER SELF P1 A PLACE2 <ABOVE BOX>. 

 

which produces SELF <ABOVE BOX>, which enables: 

SELF TRANSFER BANANA A PLACE MOUTH. 

 

which causes the BECOME action which gives the desired final state. 

As soon as the desired state is reached the feeling of the system is 

reduced to zero so that it is then ready to solve another problem. The scheme 

and plan should be noted at each step of this problem solution because they 

are the systems understanding of what it is doing and are used to answer 

"how" and "why" questions. For example, the answer to: 

Why did you move the box? 

is 

I wanted the box under the banana. 

and the answer to: 

How did you get the banana? 

 

is 
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I went to the box, moved the box under the banana, got 

on the box and eat the banana. 

It can be seen that these replies are obtained from all or part of the 

scheme ("why" questions) and plan ("how" questions) at each point. The 

following step by step descriptions of scheming and planning give a more 

detailed account of the processes: 

i) Scheming. 

 

1. Make the required state the desired state. 

2. If all the required states are in the current world model then the 

scheme is complete and the scheming succeeds. 

3. Search for a thought (suggest, produce or cause) that leads to (has 

as its second conception) the required state. If none can be found go 

back one step in the scheme and search for another thought. If no 

steps remain scheming fails. 

4. If it is a suggest thought add the required state to the scheme and 

make the first state of the thought the required state, go to step 2. 

5. Otherwise the thought (produce or cause) contains an action. 

Produce a scheme for each of the states that enable the action and add 

to the main scheme. Go to step 2. 

ii) Planning 

 

1. Make the required state the first state of the current scheme. 
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2. If all the required states are in the current world model 

then the plan is complete and the planning succeeds. 

3. Search for an action that produces or causes a required state. If 

there are then no outstanding required states check the plan by 

carrying it out internally (resetting the world model back to its original 

condition when complete). If the plan succeeds add the action to it, 

otherwise search for another action. If no other action can be found go 

back one step in the plan and search for another action. If no steps 

remain then no plan is found and the planning fails. 

4. Add the states that enable the action found to the required states, go 

to 2.  

The scheming and planning algorithms outlined above work back wards 

from the desired state because there will typically be a large number of enabled 

actions causing a forward search to have to investigate a highly-branching tree 

of possible worlds. One problem with a back ward search is an action can 

produce a state that prevents a later action. To try to guard against this the 

plan being generated is checked whenever possible and" altered if this is found 

to occur. However, the method outlined can still fail to find a practical plan if it 

involves substantial changes to the world model. 

An alternative would be to find some means of pruning the forward-

search tree using a static evaluation function that could be combined easily 

with the features of PIDGIN. One way of setting up such an evaluation function, 

using the pattern matching ability and VALUE relation of PIDGIN, is mentioned 

in the next section. 
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b. Example 2 - The Mikado Problem 

A more complex problem enables certain further features of the 

problem solver to be described. The following is a PIDGIN description of the 

Mikado problem: 

1. ALIVE <SUB AN ATTRIBUTE <FEEL 100 GOOD>>. 

2. DEAD <SUB AN ATTRIBUTE <FEEL -100 GOOD>>. 

3. KOKO <SUB A MAN>. KATISHA <SUB A WOMAN> 

4. WIFE <SUB A RELATION>. HUSBAND <INVERSE WIFE>. 

5a. A MAN <HUSBAND A WOMAN2 > [NOT] 

b.  AND A WOMAN <WIFE A MAN2 > [NOT] 

c.   ENABLE THE MAN BECOME SELF <HUSBAND 

      THE WOMAN> 

d. AND THE WOMAN. BECOME SELF <WIFE THE MAN>. 

6. KOKO <HUSBAND A WOMAN> [NOT]. 

7. KATISHA <WIFE A MAN> [NOT]. 

8a. KATISHA <WIFE A MAN> [NOT] 

b.  ENABLE KATISHA TRANSMIT 

c.   <NANKIPOO DO AN ACTION 

d.    CAUSE A PERSON2 BECOME [HURT] SELF> 

    SELF MIKADO 

e.   CAUSE [ALlVE] NANKIPOO 

f.    BECOME [DEAD] SELF. 

9a. [ALIVE] NANKIPOO 

b.  ENABLE KOKO TRANSFER NANKIPOO A PLACE 

    A PLACE2 <LOC MIKADO>. 

10a. NANKIPOO <LOC MIKADO> 

b .  ENABLE MIKADO PERCEIVE NANKIPOO. 

11a. MIKADO [NOT] PERCEIVE NANKIPOO 

b.  CAUSE KOKO BECOME [DEAD] SELF. 

12.  [ALIVE] KOKO. [ALIVE] NANKIPOO. 

13.  SELF <EQUIV KOKO> 

This is more difficult than the Monkey Puzzle because of the increased 

complexity of the thoughts including the use of NOT, because the system is 

being asked to solve someone else's problem and because the system starts in 

a final state and the problem is to avoid any future deviation from that state. 

The situation as described above enables Katisha to accuse Nankipoo, 

as she is unmarried, and this will cause Nankipoo to die which will prevent Koko 

from taking him to Mikado and so Mikado will kill Koko. 

If the command: 
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SELF COGITATE A SCHEME. 

is obeyed then it will be found that SELF (KOKO) is already in the 

desired state (ALIVE). In this case a check is made to see if this is likely to 

change in the uncontrollable future. In this case Katisha can denounce 

Nankipoo because she is not married and this will cause Nankipoo to die which 

will cause Koko to die because he will not be able to take him to Mikado. This is 

a bad thing in the uncontrollable future therefore an attempt is made to find a 

scheme that will prevent it happening. This is possible because although the 

future is uncontrollable the present can be controlled to some extent (as 

described by those enabled actions whose subject is SELF), and an action can 

change the uncontrollable future. 

The sequence of actions outlined above must be prevented, this can be 

done by carrying out an action which removes some enabling state from the 

current world model. Katisha being unmarried (8a) is the first enabling state 

and this can be disabled by thought 5 because this enables action 5d. This is 

enabled for Koko and Katisha only therefore the solution is for them to marry. 

Working backwards on a scheme Koko must transfer Nankipoo to the 

location of the Mikado (9b, 10 and 11). To do this he must be alive (9a) so 

Katisha must be stopped from accusing him (8b,c,d,e,f). This can be done by 

Katisha becoming a wife of a man (8a). For this to happen Katisha and the man 

must be unmarried (5a,b). Katisha and Koko are unmarried (6,7) therefore if 

they get married this will prevent Koko dying. The scheme is: 

[KATISHA <WIFE KOKO> 

NANKIPO <LOC MIKADO> ] 

and the action required is: 

KOKO TRANSFER NANKIPOO A PLACE A PLACE2 <LOC MIKADO>. 
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In both the above examples the problem could have been 

expressed in many different ways. For example, in practise the rules would 

probably be more general and contain more criteria. The above examples were 

set up with the bare minimum of knowledge required to express and solve the 

problem. 

2.4.5 Teaching and Learning 

If a computer modifies its output because of some input then it can be 

said to have learnt from or 'to have been taught by that input. Thus 

programming can be regarded as teaching the computer. This is the most 

important type of learning in the current PIDGIN system - being taught new 

facts and rules by the user in Input PIDGIN (and eventually in English). It is 

hoped that by this means the computer can eventually be used by the people 

with the problems in order to help them to solve those problems without 

needing to translate their problem into a conventional programming language. 

Conversational problem solving systems will provide people such as managers, 

designers, engineers and scientists with a means whereby they can explain 

their problem in English (plus mathematical notation} with conversational 

advice from the computer on inconsistencies and ambiguities so that these can 

be eliminated as they arise. In this way the computer becomes a tool to help 

the human problem solver unravel the solution and at the same time teach the 

computer the answer so that the solution and the program for solving the 

problem arise together. The computer is not being asked to, and is not 

expected to, behave "intelligently" it is there to do what it is told and to 

complain if it finds that it cannot do it. PIDGIN is a small step in enabling this to 

be done conversationally in English rather than involving special codes and 

languages, card punches and verification, turn-around and transcription errors, 

incomprehensible and useless error numbers, core dumps and cryptic 
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messages, octal, hexadecimal, job control and all the other 

paraphernalia and secondary problems that separate the user from the real 

problems and require the intervention of human aid in the form of a 

programmer in order to sort it all out. 

However, there is more to learning than programming. It is possible 

with certain problems to set up systems that learn from the short-fall between 

their behaviour and their expectations. Although little work has been done to 

investigate the potential of PIDGIN in different learning situations it is felt that 

the nature of the linguistic deep structure will enable some interesting learning 

possibilities to be investigated. In order to provide a framework for 

investigation four types of learning are distinguished - rote, rule, ratified and 

regulated. 

a. Rote Learning 

Rote learning is here taken to mean that the item learnt is simply 

added to some list or table of items. However, this is not intended to be a 

definition merely a description of how rote learning is usually implemented. 

From the point of view of a user a system which only rote learns can only 

answer questions that directly refer to the information learnt, no deductions are 

made. Rote learning is often called "parrot learning" when it is done by people, 

this term indicates that the material was not understood, that is, incorporated 

in the person's memory in such a way that it could be used to relate diverse 

other information together, but was simply remembered as a self-contained 

item. In fact quite often a large amount of material must be learnt like this 

before inter-relationships and connections can be pointed out and understood. 

A similar step occurs when using PIDGIN, simple definitions and states are rote 

learnt. It is not until the rules and connections that combine them are learnt 

that they can be related and so properly understood. 
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b. Rule Learning 

Rule learning is the name given to the incorporation of sequences of 

PIDGIN conceptions (in the form of plans, schemes, rules and thoughts) in the 

memory. More generally programming is a form of rule teaching and in human 

situations much advice and teaching takes the form of rules. Although a rule is 

rote 1earnt,in use it expresses complex relationships between other items. This 

type of learning forms the basis of PIDGIN's learning ability as has already been 

described. In PIDGIN the word "rule" refers to "IF-rule", that is, a conception 

connected to one or more other conceptions by the connector IF. Such rules 

form the basis of PIDGIN's explicit deductive ability (see Section 2.4.3) and 

correspond in many ways to the consequent theorems of PLANNER. They are 

automatically invoked by question-answering if the question cannot be 

answered directly from the memory. 

c. Ratified Learning 

Ratified learning takes place when the system generates new 

statements and then confirms them with its environment. In people this type of 

learning perhaps corresponds to thinking, that is, ana1ysing known facts and 

thus discovering new relationships and predicting likely hypothesis. In PIDGIN 

there is a special mode in which the system can generate hypotheses (see 

Section 2.4.1) check them with its memory for consistency and then confirm 

them with the user for validity. The essence of this mode of working is 

hypothesis formation. In PIDGIN this is very simple and as a consequence the 

user gets inundated with trivial questions. It is done by choosing a conception 

and then creating a more general but consistent conception from it. This is 

done by making one or more of the actors in the conception vaguer by omitting 

qualifiers and by replacing the nominal by its category concept. 
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PIDGIN can also learn by asking questions about vague or 

unspecified parts of a conception. For example:  

John went to the park. 

JOHN TRANSFER SELF A PLACE PARK.  

immediately leads to questions such as:  

Where did he come from? 

 

How did he get there? 

What time did he go? 

How long was he there? 

How long did it take him? 

Did he intend to go?  

because these questions correspond to information missing from the 

original assertion. PIDGIN is thus always aware of what it does not know.  

Rote and rule learning fill up the memory and slow down the system 

(except when one rule replaces a number of old rules or facts). But the essence 

of creative learning is - "to learn is to forget". That is, to learn is to forget what 

is not essential. Such learning frees the memory and speeds up the system. 

The usual price to be paid for replacing a precise rule by a more general one is 

that the general rule does not always work and has to be backed up by 

auxiliary rules for special cases. However, this is the way that science advances 

from data to special rules to general rules and then to general rules plus more 

data and special case rules and then still more general rules and so on. It is 

hoped that one day computers will be able to assist in the formulation and 

analysis of these rules.  

d. Regulated Learning 

Samuel's checker player (Samuel 1959) was one of the first computer 

programs to successfully learn to improve its performance by playing. The 

general scheme of the learning mechanism used is to associate each one of a 
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set of state or pattern recognisers with a weight in order to adjust 

its importance relative to the others. The sum of the product of the states and 

weights can then be used to assign a figure of merit to any situation. For 

example, in a board game to rate each possible next move so that the best can 

be chosen. Learning is achieved by regulating the weights in such a way that 

good board positions are rated well and bad positions rated badly. In Samuel's 

program the state recognisers were carefully constructed using knowledge 

derived from human checker players and the weights were then discovered by 

the program through playing games with good checkers players. One limitation 

of Samuel's original program was that it simply added all the weighted states 

together so if one state was important only in combination with one or more 

other states such a technique would not be able to take advantage of the fact. 

It would be possible to include such a learning technique in PIDGIN so 

that it could be utilised to improve scheming and planning. A state may be 

associated with a good, strong and active rating using the VALUE relation and 

this can be regarded as a weight. Further, in PIDGIN states may be combined 

using conjunction and disjunction and negated using NOT and the combination 

can be assigned a weight by specifying that is suggests some other state and 

assigning a weight to that state. A system can be envisaged in which these 

weights are improved in a forward search game-playing environment but this 

has not been investigated in detail.  

A more interesting possibility is to combine ratified and regulated 

learning so that the hypotheses generated were new state recognisers and the 

ratification was not obtained directly from the user but by using them in a 

regulated learning environment. A number of improvements suggest 

themselves, for example, generating the hypotheses by generalising only the 

most successful state recognisers. However, this possibility has not been 
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studied because the way in which hypotheses should be generated 

and ratified is such an enormous problem. 
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CHAPTER 3 EIKASIA - A PIDGIN BASED CHESS 

SYSTEM  

Winograd chose to base his conversational system on a toy-world 

consisting of coloured b10cks that could be moved around a table-top by 

means of a crane. By thus sharply delimiting the context Winograd could 

construct a self-contained and complete system. His system accepts most 

grammatical English sentences directly related to this toy-world and framed in 

a particular vocabulary. By defining a toy world the limitation of vocabulary are 

made less arbitrary and the semantic relationships are well defined. Many 

conversational systems in the past have foundered on the cliffs of language. 

Those that have tried to reduce the size of the problem have usually done so in 

a way that does not effectively restrain the user. For example, although 

baseball seems like a well-defined single subject questions about baseball can 

quickly extend into many other areas. Winograd easily and neatly defines a 

small part of English by placing the user in a new world of just a few objects 

and relationships. The limits of this world are largely written on its face and 

though the awkward user might ask "What is under the table" or "How often do 

you oil the crane" he should not be surprised at the systems response.  

In order to test some of the ideas in PIDGIN with a practical problem it 

was necessary to find a toy-world in which to work. It was decided that a two 

kings, one pawn chess-endgame was a suitable, well defined problem. It has 

fewer objects than Winograd's toy world and a better defined co-ordinate 

system but the relationships between the objects are much more subtle. Also, 

an algorithm for solving this chess endgame was available from S. Tan at 

Edinburgh University (Tan 1972). The predicates and action schemes defined in 

this algorithm were taken as the basic actions and states in a conversational 
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PIDGIN system called EIKASIA.  

 

3.1 A History of Chess Systems 

The history of computer chess divides, approximately into two camps, 

the first is concerned with writing a program that will beat as strong a human 

player as possible, the second is concerned with the chess problem only in so 

far as it embodies other more general problems. EIKASIA is in the latter camp. 

As a chess player EIKASIA is very poor but it is still of interest because of the 

way in which it is constructed. A program that played chess at grandmaster 

level would only be of interest in so far as it demonstrated general problem-

solving techniques and EIKASIA is clearly a general problem-solver. 

Some of the work in the latter camp has been done without actually 

writing a computer program that plays chess. An important early paper on the 

subject was written by C. Shannon (1950). In this paper he lays down features 

that he considers necessary for inclusion in any chess program. Some of these 

features are details of evaluation functions, static positions and minimax as well 

as forward pruning of the search tree. Later Turing (1950) published a paper 

extending Shannon's ideas and then Samuel (1959) produced a paper which, 

though it concerned a checkers playing program, described how many of these 

ideas had been built into a practical program. 

The first chess program to incorporate these ideas was written by 

Bernstein (1957). This program aroused some public interest and it managed to 

play at "passable amateur" level taking an average of two minutes per move. 

Also at about the same time Newell, Shaw and Simon wrote a chess playing 

program based upon ideas from GPS (Newell 1958). This program was 

fundamentally similar to the other work that had been done but it approached 
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the subject from a different viewpoint, that of the goal/sub-goal 

scheme. They also introduced further refinements to tree-searching including 

the alpha-beta algorithm.  

From 1958 until recently the only notable contribution has been a paper 

by Good (1968) listing a number of features and ideas to bear in mind when 

writing a chess program. Good's paper is a major summary and analysis of the 

complete field and the fact that his idea do not seem to have been acted upon 

until recently suggests that most chess programmers in the first camp regard 

the problem as simply a programming one. 

 

In 1973 A.L. Zobrist and F.R. Carlson published a paper (Zobrist 1973) 

describing a chess program that had been designed with a slightly different 

objective from usual. Their system was designed so that it could be given 

"advice" by expert human-chess players. This advice was given in the form of 

routines written in a simple language based on chess notation. Chess players 

with no previous computer programming experience could quickly learn this 

language and use it to correct faults in the programs play. One of the 

difficulties of writing chess programs has been the difficulty of translating chess 

knowledge into computer notation. By enabling the chess expert to "program" 

the computer directly it was hoped to overcome the translation problem. The 

routines that can be defined in their language consist of a pattern and a 

weighting. The system uses the pool of routines to try to find patterns on the 

board and associate weights with them. The system is set up so that the 

patterns are independent of the actual positions of the pieces but only depend 

on their relative positions. For example, a routine can be defined that matches 

bishops and knights on the back row and returns a negative weight. This would 
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tell the program to "get your bishops and knights off the back row". 

This type of advice corresponds to SUGGEST connections in PIDGIN. 

Their system uses this advice as a form of static evaluation function to 

prune the look-ahead tree. They go on to say that they believe computers will 

use advice-taking for the performance of tasks that demand more "intelligence 

than is needed for the simple clerical chores they now perform. 

The language accepted by Zobrist's program is a very simple 

programming code. It would seem that a much more sophisticated input 

language is required to improve the performance. However, such a language 

cannot be a normal programming language otherwise no problem has been 

solved. I have taken PIDGIN as this language and have tried to justify this by 

considering the design of a PIDGIN based two kings, one pawn chess-endgame 

playing program called EIKASIA.  

 

3.2 A Description of the Endgame Problem 

Most chess playing programs let the endgame take care of itself. In fact 

the seemingly trivial single pawn ending is more difficult than most puzzle 

problems. It has the additional advantage that human players seem to use 

knowledge gained from chess literature to solve it but at the same time there is 

no obvious numerical evaluation function that can be used. The problem thus 

requires a solution that involves storing and efficiently utilising a great deal of 

specific chess knowledge. 

The work done by S. Tan at Edinburgh University (Tan 1972) illustrates 

one method for storing such knowledge. Other work has been done on the 

endgame problem (Huberman 1968) but the approach taken by S. Tan fits in 

well with ideas incorporated in PIDGIN. The program developed by Tan is a 
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computer representation of the knowledge contain ed in a number 

of books on chess endgame theory (Averbakh 1958, Fine 1941). This 

knowledge is stored as a decision tree, the nodes are predicates for recognising 

"good" board patterns and the leaves are action schemes. A similarity can be 

seen here with the advice-taker chess program of Zobrist but the patterns are 

combined to form a tree rather than being associated with a single integer 

weight. A path down the binary tree is determined by a particular board 

situation, at each node the result of applying the associated .predicate will 

select one of two paths corresponding to succeeding or failing to match the 

"pattern". The action schemes specify what is to be done in each particular 

board situation. 

More exactly there is a board of 64 squares, each referenced by two co-

ordinates, the first specifies the file, lettered from A to H, left to right, and the 

second the rank, numbered from 1 to 8, bottom to top. There is a white king, a 

white pawn and a black king on the board, and the white pawn always moves 

upwards. White wins if the pawn reaches the eighth rank and is not captured 

immediately. A game is also terminated by a draw, either because the black 

king takes the pawn or a stalemate situation occurs. A position is defined by 

the board configuration (the co-ordinates of the three pieces) together with the 

information about who is on the move. 

A position defines a situation which is either intermediate or terminal if 

the one on the move is stalemate or black has captured the pawn or the pawn 

has been successfully promoted. A game may also be terminated by either side 

resigning or by mutual agreement. A game may be started in any legal chess 

board configuration by mutual agreement when all three pieces are on the 

board. 
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Let S be the set of situations. A (unary) predicate P is a 

partial function from S to true or false. Every predicate defines a subset of S, 

namely the inverse image of true. An action scheme is a partial function from S 

to S. Every action scheme defines, for each situation in its domain, a legal 

move applicable to the situation.  

If A, A1, A2 are variables for action schemes and P, P1 P2 for 

predicates then: 

A ::= <elementary action scheme> 

 

 if P then Al else A2 close  

 

<elementary action scheme> ::= PAWNSTEP PAWNJUMP. MOVE2 

     WGOPAWN BGOPAWN LETPASS 

     RUN SUPPORT MANOEUVI 

     MANOEUV2 MANOEUV3 MANOEU4 

     MANOEUV5 NOP  

 

P ::= <elementary predicate> 

 not PI 

 P1 and P2 

 P1 or P2 

 if P then P1 else P2 close 

 

<elementary predicate> ::= ADVANCE CAPTURE SELFBLK 

    MATCH1 MATCH2 WSTALEM 

    BSTALEM DOMINANT CANRUN 

    BKAHEAD NEEDSUP WSEE 

    BSEE LOOKAHD  

The two kings, one pawn chess-endgame program is constructed from 

the above predicates and action schemes. The way they are put together 

represents the programs knowledge of playing chess. They are put together in 

sentences of the form: 

<advice sentence> ::= dummy 

 

<val, A> 

if P then <advice sentence> 

 else <advice sentence> close  

where dummy is a do-nothing sentence, <val, A> is an ordered pair 

with val=WHITEWIN, DRAW or EVALUATE. If val is EVALUATE then the value of 
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the situation is obtained by executing A and searching further 

through the game tree.  

The knowledge structure can be seen as a binary decision tree with 

non-terminal nodes corresponding to predicates and terminal nodes to pair-

wise disjoint subsets of S.  

The action schemes and predicates listed above were extracted by Tan 

from chess literature on the endgame, they are the building blocks of the 

program and it is profitable to consider how some of them arose.  

The predicates relate to the position or relative positions of the pieces. 

Some of these are fundamental, for example ADVANCE is true if and only if the 

pawn can advance one square without being taken, CAPTURE is true if and only 

if the pawn can be captured immediately and SELFBLK is true if and only if the 

white king is on the same file as and immediately in front of the pawn. 

MATCH1 and MATCH2 are true if the pattern specified occurs some 

where on the board. Each takes two sets of co-ordinates relative to the pawn. 

MATCHI is true if the two kings are at the specified co ordinates, MATCH2 is 

true in this case and also if the left-right inverse of the co-ordinates matches. 

For example, if the configuration: 

WK   

   

WP  BK 

occurs anywhere on the board then MATCH1 (1, 3, 3, 1) and MATCH2 

(1, 3, -3, 1) will both be true. 
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There are three other general predicates, WSTALEM and 

BSTALEM are true if the specified colour cannot make a legal move, and 

BKAHEAD is true if the black king is ahead of the pawn. 

The other predicates relate more specifically to the one pawn ending. 

The concepts of critical or key squares and the "rule of the square" are stressed 

in the chess literature as being important in the endgame and these concepts 

are implemented by the predicates DOMINANT and CANRUN. 

The following section of stylised program gives some idea of how the 

program is constructed by Tan in the programming language POP-2: 

if colour(machine)=white then 

 

 if rank (whitepawn)=7 then 

  if advance then <WHITEWIN, PAWN1> 

  elseif rookpawn then 

   if selfblk then 

    if wstalem then <DRAW, NOP>  

    else <WHITEWIN, LETPASS> close 

 

   else <DRAW, WGOPAWN> close 

  else 

   if wtry(-1,O,1,O) or wtry (-1,-1,0,1) then 

   else if selfblk then <WHITEWIN, LETPAS> 

    else <DRAW, WGOPAWN> close 

   close 

  close 

 close 

else ...  

 

 

This is clearer if drawn as a tree: 
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3.3 PIDGIN and the Endgame 

 

EIKASIA is a particular, integrated extension of PIDGIN that is it is a 

PIDGIN system incorporating numerous concepts, rules, thoughts, beliefs and 

dictionary entries concerned with a particular problem. It is integrated in the 

sense that the extension is a complete solution to the problem. However, this 

does not mean that it is the best solution to the problem. By further dialogue 

with users the solution might be improved or extended to cope with a wider 

range of problems. EIKASIA as described here is only the design of a PIDGIN 

based one pawn chess-endgame system because of the limited nature of the 

PIDGIN implementation. Also it is not intended to be a practical chess endgame 

system in that it will not necessarily beat or play as quickly as a program 

designed specifically for the purpose. However, chess was not the motive for its 

development. It will have served its purpose if it shows that PIDGIN is capable 

of solving problems as complex as the one pawn endgame without losing its 

flexibility.  

Having completed the initial design it seems that the problem chosen 

might not be the most suitable because the solution is so clearly and efficiently 
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demonstrated by the program of S. Tan. It might have been better 

to have chosen an ill-defined problem and demonstrated how PIDGIN can be 

used as a conversational aid to the gradual development of the solution 

because this is really what PIDGIN was designed for. Nevertheless it is hoped 

that while reading the following description of EIKASIA the way in which the 

system could have been gradually developed will be borne in mind.  

 

3.3.A PIDGIN Particular Extensions 

The extension required to the initial PIDGIN system in order to 

construct a chess endgame system can be divided into four parts: 

i) Chess concepts: The pieces, board and other objects, relations 

and attributes. 

ii) Board states: The rules and thoughts required to recognise board 

patterns of significance in the endgame. 

iii) Board actions: The legal moves, the good and bad moves plus 

their enabling states and the states they produce. 

iv) Positive and negative states: The final states, suggestions for 

positive and negative play, and positive and negative board-pattern 

recognisers.  

 

3.3A1. Chess Concepts 

EIKASIA manipulates a black king, white king, and a white pawn which 

may be in a box or anywhere on an 8x8 board of 64 squares. The view is 

initially a 2x2 grid with the structure:  
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OPPONENT SPECTATOR 

BOARD BOX 

This can be set up by the following PIDGIN: 

ALL PLAYER <SUB A PERSON>. 

 

ALL OPPONENT <SUB A PLAYER>. 

ALL SPECTATOR <SUB A PERSON>. 

ALL BOARD <SUB AN OBJECT>. 

ALL BOX <SUB AN OBJECT> 

The view can be set up by the command: 

SELF TRANSMIT * <<OPPONENT SPECTATOR> 

 

<BOARD BOX>> HERE VIEW 

However, when a game is being played the view is changed to an 8x8 

grid representing the chess board. This is defined as: 

ALL SQUARE <SUB A PLACE>. 

 

NEWBOARD <SUB A BOARD>. 

 

A1 <SUB A SQUARE>. A2 <SUB A SQUARE>. 

 

... H8 <SUB A SQUARE>. 

$ <<A8 B8 ... H8> <A7. ... H7> ...  

  <A1 ... H1>> :NEWBOARD. 

 

LASTRANK <SUB A PLACE>. 

 

$ <A8 B8 C8 D8 E8 F8 G8 H8> :LASTRANK. 

 

In a normal chess game NEWBOARD would contain all the pieces laid 

out correctly but in this endgame they can be set up anywhere therefore the 

board is initially empty, and the pieces are in the BOX. 

ALL PIECE <SUB AN OBJECT>. 

 

ALL KING <SUB A PIECE>. 

ALL PAWN <SUB A PIECE>. 

BKING <SUB A [BLACK] PIECE> 

WKING <SUB A [WHITE] PIECE>. 

WPAWN <SUB A [WHITE] PAWN>. 

BOX <CONT WPAWN>. 



 
193 

BOX <CONT WKING>. 

BOX <CONT BKING>. 

The system keeps track of the entities in the view and a change of 

location of anyone is automatically recorded by a corresponding change to the 

view. This is the internal mechanism that simulates a change of location being 

performed by an "arm" and picked up by a camera. 

3.3A2. Board States 

S. Tan has fourteen elementary predicates over board positions. These 

can be incorporated in EIKASIA by defining the relevant states in terms of the 

positions of the pieces or by appropriate patterns. For example, Tan defines the 

predicate ADVANCE as: 

i) function advance s; vars x y; 

 

 wk(s(5),s(6)+1)->x; 

 dbk(s(5),s(6)+1)->y; 

 if x=0 or y=0 then false 

 e1seif y=1 and x > 1 then false 

 else true 

 close 

 

end 

In English this is, the pawn may advance if the square above it is not 

occupied and the black king is more than one square away from it or the white 

king protects (is next to) it. In PIDGIN this becomes: 

[ADVANCE] WPAWN IF 

 

 A SQUARE <ABOVE WPAWN><CONT NO PIECE> 

 AND BKING <FAR THE SQUARE> 

  OR WKING <NEAR THE SQUARE>. 

This definition will automatically fail if the pawn is not on the board or is 

on rank eight. The following examples illustrate other techniques: 

ii) function capture s; 

 

 comment true iff white pawn can be captured immediately 

 if dbk(s(5),s(6))=1 and dwk(s(5),s(6))>1 
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  then true else false close 

end  

 

A PIECE <CAPTURE A PIECE2>IF 

SELF DO <A PLAYER TRANSFER THE PIECE A SQUARE THE PIECE2> 

AND SELF DO <A PLAYER2 [NOT] TRANSFER A PIECE1 A SQUARE3 

      THE PIECE>. 

During a game a piece can only be transferred to another square by a 

legal chess move. The chess moves are defined by means of enabling 

conditions (see next page). Note that a piece can be treated as a place when it 

is actually the square occupied by the piece that is being referred to. This is 

possible because the pieces are in the view and can be found by searching. 

iii) function selfblk s; 

 

 comment true iff white king blocks the white pawn; 

 if s(1)=s(5) and s(2)=s(6)+1 then true 

 else false close 

end  

 

 

[SELFBLK] WPAWN IF 

 WKING <ABOVE WPAWN><COL WPAWN><NEAR WPAWN>.  

 

 

iv) function match1 a b c d; 

 if s(1)=s(5)+a and s(2)=s(6)+b and 

 s(3)=s(5)+c and s(4)=s(6)+d then true 

 else false close 

end  

 

 

This matching ability is already built into PIDGIN for examp1e: 

SELF IDENTIFY *<<WKING><A SQUARE1><WPAWN A SQUARE2 

    BKING>>. 

 

 

will match: 

WKING   

   

WPAWN  BKING 
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3.3A 3 Board Actions 

The pieces are moved by the TRANSFER act, the actions of which are 

automatically reflected in the view by the system. If the view does not contain 

the piece transferred or the action is not enabled then the command will fail. 

The following requirements must be met: 

i) when a game is not in progress any move is allowed; 

ii) during a game moving a piece onto a square that is already 

occupied causes the piece that was there to be moved to the box; 

iii) the moves of the pawn and king must be defined by the correct 

enabling conditions to reflect the rules of chess. 

This can be done by the following PIDGIN ,statements:  

 

A GAME [STOP] ENABLE 

 

 A PERSON TRANSFER A PIECE A PLACE A PLACE2 

A PERSON TRANSFER A PIECE A PLACE 

   A SQUARE <CONT A PIECE2> 

 PRODUCE THE PIECE2 <LOC BOX>.  

A [COLOUR] PLAYER [CAN] TRANSFER A [COLOUR] PAWN 

 A SQUARE A SQUARE2  <COL THE SQUARE> 

     <NEAR THE SQUARE> 

     <CONT NO PIECE>. 

A [COLOUR] PLAYER [CAN] TRANSFER A [COLOUR] PAWN 

 A SQUARE A SQUARE2 <ABOVE THE SQUARE> 

     <NEAR THE SQUARE> 

     <NOTCOL THE SQUARE> 

     <CONT A [COLOUR2] PIECE>. 

A [COLOUR] PLAYER [CAN] TRANSFER A [COLOUR] KING 

 A SQUARE A SQUARE2 <NEAR THE SQUARE> 

     <CONT NO [COLOUR] PIECE>.  
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3.3M Game Playing 

 

The knowledge contained in the program written by S. Tan can be 

divided into two parts, that within the statements making up the program and 

that implied by the ordering of the statements. The rules of PIDGIN are the 

equivalent of the statements of the program. Each rule independently 

recognises a particular situation and enables an action which produces a state 

suggesting either a win or a draw. S. Tan suggests that the strength of an 

experienced player is related to the organisational structure of his chess 

knowledge. This organisation could be built into PIDGIN by the construction of 

large IF-rules and it is this type of structure that would be built up if PIDGIN 

were told exactly what to do in each situation. This is the type of knowledge in 

S. Tan's program but it is not the type used to teach chess (for example, it is 

not the type found in chess books). Teaching chess usually consists of 

presenting a number of guides and rules and then leaving it up to the person 

learning to discover the way in which they must be combined together. This is 

usually done by playing chess and learning from experience. 

One of the features of PIDGIN is the ability to develop the system by 

adding new rules and revising old ones. This implies a loose organisation of the 

rules and it would seem that the more rigid the organisation the more the user, 

or teacher, must be aware of it. At one extreme each rule is independent and 

the user may freely change or add a rule without being aware of the others. At 

the other extreme the complete system is one rule and to change any part the 

user must be aware of all the other parts. One extreme corresponds to 

PIDGIN's conversational but inefficient way of working and the other to S. Tan's 

program.  
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A compromise between the two extremes is possible if 

PIDGIN can be made to organise its own rules. For example, it could maintain 

the order it was told the rules and try the oldest and most detailed first, re-

ordering them at each move in a way which would reduce the time it would 

take to repeat that move analysis. This would produce a simple linear ordering. 

As a next step it could build up a tree structure by searching for common sub-

rules. For example, if two rules were: 

[RULE1 RULE 2 RULE 3 RULE4] 

 

[RULE1 RULE 2 RULE5] 

 

then it could construct: 

[ [RULE1 RULE2] (RULE5 [RULE3 RULE4] ) ] 

 

Where square brackets form conjunctions and round brackets 

disjunctions (see Section 2~1.1). Note, that the new disjunction is unordered 

and so will automatically be ordered by the ABC processor in a way that will 

result in the one that has succeeded most often in the past being evaluated 

first. The other advantage of this restructuring is that common sub-rules are 

only evaluated once, though this could also be achieved by an alternative 

scheme in which the result of evaluating a rule was remembered and used 

whenever the rule was called with the same arguments or until the memory 

was altered. 

The advantage of an organising algorithm is that the user can deal with 

the system at the level of the single simple rule yet the system is not thereby 

made unnecessarily inefficient. The above scheme has not been worked out in 

detail but it is suggested as the best way of extending PIDGIN to take 

advantage of the efficiency that results from organising the knowledge base.  
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S. Tan's program will find a move given any board 

configuration without needing to formulate an overall strategy or produce a 

detailed plan. This means that in PIDGIN no scheming (strategy) and little 

planning are required, for each configuration the rules simply give the move to 

make. However, with more complex chess problems it is likely that a great deal 

of effort would be put into producing and comparing different schemes and into 

constructing various plans for achieving the states outlined in those schemes. 

For example, some schemes might be:  

Control centre,  

Develop pieces  

Make open file, Double-up rooks  

Find passed pawns, Queen  

One disadvantage of not having such schemes with their associated 

plans is that "how" (planning) and "why" (scheming) questions cannot be 

answered. Without a scheme the only reply to a "why" question is "In order to 

win" (or draw) and consequently "how" questions are also reduced to either 

simply the last move made or the complete sequence of predicated actions 

leading to the win (or draw).  

If schemes are produced they are likely to remain valid for a number of 

moves but plans are rendered invalid as soon as the opponent does not make 

the predicted reply. This typically means that a continual replanning is 

necessary and so it would be desirable to find some way of reducing this 

overhead. One way is to produce a structured plan that contains the best reply 

to a number of the opponent's possible replies. Whether the extra time required 

to produce this more complex plan would be offset by the subsequent saving in 
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time at future moves depends, among other things, on how well the 

program can predict the opponent's moves. It would, for example, be very 

difficult if the opponent was aware of the programs attempt to do this. It is 

interesting to note that most chess programs carry no information from move 

to move and analyse each position afresh. This is because it has been found 

that the time required to check if the information carried forward is still 

relevant in the light of the opponents reply is about equal to the time required 

to re-analyse the position. This conflicts with the fact that people generally 

require longer to make a move if they have not seen the position before than if 

it is one that occurs during a game they are playing. This suggests that people 

do carry information forward and adds weight to the attempts to do likewise, 

for example, in the form of PIDGIN schemes. Another way of improving the 

efficiency of the system would be to remember past positions and the 

associated move made. Then if a similar position were to re-occur the same 

move could be used without needing to analyse the position. The problem is 

that it is useless to try to remember all positions as there are so many that the 

time to access anyone would soon exceed the analysis time. This problem 

would be solved if the system could save just the essentials of the position, 

however, this amounts to the system learning to play chess because whether 

two positions are similar depends on all the rules of chess. A program for 

detecting similar positions would be equivalent to the analysis rules 

themselves, and a program that extracted the essential features of a position 

would be one that was generating a chess playing program. All these 

techniques therefore, although interesting in their own right, are not useful 

ways of improving the efficiency of PIDGIN. 

Appendix IIC gives some details of the PIDGIN statements required to 

set up EIKASIA.  
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3.3B A Typical Endgame 

This division goes through the analysis of a complete endgame. The 

starting position and analysis are taken from S. Tan (1972) but the description 

is given in terms of PIDGIN. The starting position is: 

8        WK 

7         

6         

5         

4         

3   BK     WP 

2         

1         

 A B C D E F G H 

  White to move 

In this position there are a number of attributes that are true and a 

number that are false. The attribute CANRUN is false (see Appendix IIC) 

because the black king is just inside the "promotion square" of the white pawn 

but the white king is also in the promotion square (NEEDSUP is false) and not 

blocking the pawn (SELFBLK is false) therefore the pawn is moved forward 

(PAWNSTEP). The only applicable attribute that is true is ROOKPAWN but as 

this is the simplest condition the others must be checked first, for example, if 

the conditions with their corresponding actions are: 

[ROOKPAWN SELFBLK] LETPASS 

[ROOKPAWN BKAHEAD] SUPPORT 

ROOKPAWN PAWNSTEP 

then obviously the more specific conditions must be checked first 

otherwise they would never be checked. 
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Black's best move is to try to reach the pawn and hope that 

white makes a mistake, therefore black moves to D4. The above analysis holds 

for the new position and results in a similar two moves, this is repeated once 

more leaving the following position: 

F G H  

  WK 8 

   7 

BK  WP 6 

White now has only two possible legal moves, one leads to a win and 

the other to stalemate. The winning move is found by a pattern match which 

matches the above position (or its inverse) and results in the king moving to 

G8. 

The ADVANCE attribute is now true and this results in the white pawn 

being moved one square forward on each move, so whatever move black 

makes the game ends in two moves (the game ending when the pawn reaches 

rank 8). 
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CHAPTER 4 THE TRANSLATION OFA .SUBSET OF 

ENGLISH  

 

4.1 Introduction 

PIDGIN is a language in which a subset of English can be 

unambiguously represented. This chapter is concerned with the disambiguation 

of sentences in that subset of English by describing the equivalent PIDGIN 

statements. Question-answering systems differ greatly in the way they handle 

the analysis problem. Some, such as Colby's interviewing program (Colby 

1969b), look for key phrases without attempting a detailed analysis. On the 

other hand Winograd's system carries out a detailed analysis of each sentence, 

using a special programming language called PROGRAMMAR for the purpose. 

Winograd's analysis program is based on M.A.K. Halliday's systemic grammar 

and it uses context and semantic information and the powerful deductive 

facilities of PLANNER to generate a parse tree for any sentence given to it. 

Another program then translates this parse tree into a PLANNER program 

whose action is equivalent to the meaning of the sentence. A disadvantage of 

this approach is that the syntax of PLANNER was not designed to represent the 

meaning of natural language sentences. It was designed as a theorem-proving 

language to enable people to write computer programs to solve certain classes 

of problem more easily. Schank shows that by designing a suitable 

representation language the problem of analysis is simplified because it 

becomes driven by the structure of that language. Because the syntax of 

PIDGIN is equivalent to Schank's representation language the ability to 

translate English into PIDGIN is guaranteed by the translator described by 

Schank. This chapter to some extent describes Schank's translation scheme 

applied to PIDGIN. However, a number of changes have been made in order to 
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take advantage of the features of PIDGIN that simplify translation. 

For example, the effect of context on translation, the resolution of cross-

references, the generation of answers, the format of the dictionary, the 

suspension and re-activation of analysis and the fact that PIDGIN is 

implemented in ABL all simplify translation because of their special form in 

PIDGIN. 

None of the ideas presented here have been implemented because of 

the equivalent translator described and implemented by Schank. This chapter 

describes both a PIDGIN version of Schank's translator and a number of more 

general points concerning the nature of the particular subset of English that can 

be handled by PIDGIN. The chapter is divided into a description of the analysis 

of a subset of English into PIDGIN, a description of the synthesis of PIDGIN 

back into English and a brief discussion of how these might be combined in a 

working system. 
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4.2 The Analysis of English 

 

4.2.1 The Analysis Process  

 

The data paths of the system are shown in the following 

diagram:

 

It can be seen that the translation of English into PIDGIN takes place in 

three steps internalisation, explication, and analysis. These three steps each 

perform one stage of the translation. lnternalisation works at the character 

level and produces words in the surface-structure buffer. Explication works at 

the word level and produces items in the shallow-structure buffer. Analysis 
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performs the major job of translating the standardised English 

items into PIDGIN.  

4.2.1A Internalisation 

This is the process of translating a sequence of characters, typed by the 

user, into a sequence of words. It becomes clear in the section on conversation 

(Section 4.4) that this translation cannot take place in isolation because of the 

possibility of typing errors and abbreviations. To cope with this it must combine 

with explication to ensure that the division into words takes place at the correct 

point. Apart from the practical problem of typing errors and spaces being 

omitted the interna1isation can take place at the character level. A word is a 

sequence of letters, a number is a sequence of digits (possibly with a decimal 

point) and other characters are treated as separate symbols. One practical 

problem is the detection of the end of the user's input. It might be terminated 

by the end of the line or the sentence might be run over more than one line or 

there may be more than one sentence on a line terminated by full-stops, 

question-marks or exclamation marks. One simple solution is to insist that all 

sentences are terminated in some standard way (symbol or end of line with the 

option of continuing over more than one line by the use of a continuation 

symbol). A better solution would be to do all analysis strictly from left to right 

word by word then if the end of the line was reached and the analyser had no 

outstanding syntax structures to be completed the input would terminate 

otherwise another line would be read, this could be combined with the ability to 

terminate by symbol if desired. The fact that people find trouble with this 

problem especially when communicating using a terminal indicates that no ideal 

solution exists. The output from interna1isation is a sequence of words, 

numbers, where numbers have been translated into the appropriate internal 

machine representation, and symbols, where the character has been translated 
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into a word {for example, "." into DOT, "?" into QUERY and so on). 

Spaces are ignored.  

4.2.1B Explication 

This is the second stage of the translation process. Words are 

translated into a form that can be handled more easily by analysis. For 

example, affixes are removed and translated into separate qualifying items and 

idioms are replaced by the equivalent standard phrase. The result is a sequence 

of items all of which appear in the systems dictionary and which are loosely 

joined into structures (for example, word plus affix structure or quoted text 

structure). 

a. Affixes 

 

If a word does not occur in the dictionary a check is made to see if it is 

possible to remove affixes to produce a sequence of items that appear in the 

dictionary. 

 

It is useful to distinguish a unit lower than the word in English 

grammar, it is called the morpheme. It arises through considering the structure 

of words, for example, many words occur on their own and with certain endings 

in particular contexts, for example, hunt, hunts, hunted, hunting and hunter. A 

morpheme that may be used as a word is called a free morpheme and the 

others bound morphemes, and the obligatory part of a word is called the base 

morpheme. In general the base morpheme is a free morpheme though such 

words as detain, contain and deceive, conceive may best be analysed as two 

bound morphemes. 
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Two types of bound morpheme can be distinguished, 

inflexional, which may only occur once in a word and always occur last, and 

derivational which do not form into sets and may occur more than once. For 

example, novel+ist+s consists of free base morpheme+bound derivational 

morpheme+bound inflexional morpheme. The items in PIDGIN correspond 

roughly with the morphemes of English grammar. The two types will now be 

considered: 

 

i) Derivational. In general in PIDGIN derivational items are checked 

for if the word is not in the dictionary but if they are found they are 

removed and ignored. 

Examples are: -ISH, -IST, -ISE. 

ii) Inflexional. These form sets corresponding to the word classes of 

verb, noun and adjective.  

Noun inflexional. Only "s" is checked for, if present it is made a 

separate item. Other plural forms are handled by the idiom facility. 

Adjective inflexional. The comparative and superlative postfixes (-ER 

and -EST) are checked for and if present MORE or MOST is inserted 

before the adjective and the affix removed. 

Verb inflexional. The endings -S, -ED, -ING and -EN are checked for 

and if present are separated. Irregular verb forms are handled by the 

idiom facility.  
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b. Idioms 

 

It is possible for the user to define idioms, that is to specify one or 

more items to replace one or more input words. This facility can be used to cut 

down the number of dictionary entries required. The primitive IDIOM is used to 

extend the idiom dictionary, for example:  

$ <IDIOM [APOSTROPHE S] POSSESSIVE>. 

 

$ <IDIOM [S APOSTROPHE] POSSESSIVE>. 

$ <IDIOM BEST [MOST GOOD]>. 

$ <IDIOM MEN [MAN S]>. 

$ <IDIOM FEET [FOOT S]>. 

$ <IDIOM ATE [EAT ED]>.  

 

4.2.1C Analysis 

 

Analysis proceeds at two levels, the sentential and the conceptual. At 

the sentential level the Analyser uses a number of language dependent 

heuristics to look for the main nouns and verbs. It then brackets the dependent 

words with their governor using agreement rules based on word endings and 

function words. Thorne (1968) has shown that it is possible to do substantial 

syntax analysis without any information about "open class" words (nouns, 

adjectives and verbs). The sentential level analysis is carried out on the shallow 

structure of items constructed by explication. At the conceptual level the 

system is restricted by the syntax of PIDGIN as to the possible deep structure it 

can create. It is also limited by the memory as to the possible combinations of 

concepts allowed. Unless the user has a priority of 100 the system will not allow 

any combination of concepts unless some combination already in the memory 

can be substituted for it. Thus the conceptual level allows a top-down approach 

to the analysis because it knows what structures are possible, while the 
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sentential level suggests a bottom-up approach because it is faced 

with the actual input sentence. The two levels are linked through a special 

memory known as the dictionary. The dictionary specifies the conceptual 

structure associated with each syntactic structure. Entries can be added to the 

dictionary by the primitive DICT. Each entry has the form: 

DICT item type structure 

 

 

where "item" is the shallow structure item, "type" is the syntax class 

and "structure" is the associated conceptual structure.  

Possible syntax types that may be specified are: 

INTRANSITIVE no sentential object, e.g. sleep, die. 

TRANSITIVE a direct object, e.g. hit, like, wants.  

INDIRECT no direct object, but a possible indirect object, e.g. go. 

 

PSEUDO direct object to be treated conceptually as the actor in a 

relation of the form: X DO ... CAUSE Y ACT ... where X is the sentential 

subject and Y the sentential object, e.g. break, grow, open.  

TRANSFER two objects with no preposition in front of them, in which 

case the first is recipient, the second the object, or in reverse order 

separated by "to", e.g. give, buy, sell.  

DOUBLE two subjects and no sentential direct object, or an ordinary 

transitive verb followed by "with", e.g. fight, communicate.  
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STATE "that" following the verb or a noun-verb combination 

as object, possibly separated by "to", e.g. think, see, allow.  

DETERMINER followed by a possibly qualified noun, e.g. the, some, 

this. 

 

ADJECTIVE followed by a possibly qualified noun, e.g. red, tall, happy. 

NOUN possibly preceded or followed by qualifying nouns, e.g. boy, 

John, we.  

PREPOSITION followed by a noun group, e.g. with, to, on.  

QUESTOR introduces a question, e.g. what, how, which.  

CONJUNCTION includes special syntax checks for "and" and "or" 

constructions, e.g. but, since, although.  

AFFIX special cases, e.g. plural "s", possessive.  

ADVERB complex rules for position, e.g. slowly, almost, still.  

Appendix II gives some examples of dictionary entries.  

The sentential syntax analyser makes use of routines associated with 

the word types together with a set of built-in rules specifying the order in which 

the word types occur in English. This information is used to guide the Analyser 

when it looks through the sentence for concepts to insert into the conceptions it 

is building up.  

The Analyser thus proceeds as follows: 
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i) Surface level heuristics (word endings, function words 

and so on) are used to find the main verb, and subject.  

ii) The main verb is used to extract a model conception(s) from the 

dictionary.  

iii) The model conception is used to guide the system in what to look 

for; the sentential order rules tell the analyser where to look first, 

where to look if that fails and so on.  

iv) Each word in the sentence gives rise to some piece of deep 

structure that must be fitted into the statement being constructed 

according to the restrictions imposed by the conceptual knowledge.  

v) As the analysis proceeds the memory and deductive facilities are 

used to resolve questions of ambiguity and consistency.  

vi) The completed statement is moved to the thought processor with 

an indication as to whether the sentence was a question, command or 

assertion.  

vii) The processor checks the statement with memory for consistency 

and then it takes the appropriate action (adds it to the memory, obeys 

the command or answers the question). 

4.2.2. Word Analysis 

 

The last section discussed the complete analysis process from the point 

of view of the implementation of the translator. This was not covered in any 

detail as it has been described by Schank else where. However, the more 

general consideration of the adequacy of PIDGIN for representing a large 
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subset of English must be discussed. Although it follows, to some 

degree, from the adequacy of Schank's notation Schank does not discuss this in 

detail. The following discussion compares the capabilities of the PIDGIN deep 

structure with the requirements of the English language, mainly as described by 

Quine (1960). This is done by taking English constructions and considering the 

equivalent PIDGIN structure. This is not done from the point of view of the 

oddities of English syntax but by considering some of the main semantic 

features. First at the word level and then, in the next section, at the sentence 

level. The vaguer and more difficult features that arise beyond the sentence 

level are discussed in Section 4.4.  

4.2.2A Divided Reference 

 

The dichotomy between singular and general terms has been 

considered important throughout the history of the philosophy of language. A 

singular term names or purports to name one object while a general term is 

true of a number of objects. There is a third category which acts in some ways 

like singular and in some ways like general terms, these are the mass terms.  

4.2.2A1 Mass Terms 

 

Mass terms, such as "red" and "water" are best regarded as terms 

which do not engage in the sophistication of divided reference. In this sense 

they can be regarded as the remnants of our childhood use of terms (for 

example, "Mama", "Dada"). Grammatically mass terms are like singular terms 

in resisting pluralization and articles. Semantically they are like singular terms 

in not dividing their references but they do not name a unique object each. In 

PIDGIN it must be decided whether to represent mass terms by entity concepts 
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and thus regard them as referring to one scattered object or by 

group concepts and thus regard them as referring to various shaped and sized 

portions of the object stuff. The later alternative is chosen (although it conflicts 

with the way Quine chooses to treat mass terms) because it enables the 

various uses of mass terms to be more easily handled in PIDGIN. The problem 

of exactly what size a single portion of, say, water or red is, is not defined, it is 

simply what people choose to make it from occasion to occasion. By their use of 

the demonstrative people do choose to talk about certain sized portions of stuff 

named by mass terms, for example:  

This water is unfit to drink. 

 

That red is a shade too dark. 

The following examples illustrate the way mass terms are handled in 

PIDGIN by group concepts: 

Water is a liquid. ALL WATER <SUB A LIQUID>. 

Red is a colour. ALL RED <SUB A COLOUR>. 

This red is suitable. A [SUITABLE] RED. 

The water is lovely. A [LOVELY] WATER. 

The decision to treat mass terms as group concepts allows, for 

example, "the water in this glass is a liquid" to be deduced from the first 

example above but prevents "water is unfit to drink" from being deduced from 

"this water is unfit to drink". There are many other examples:-  

Most water is now polluted. 

 

<MORE <DIV ALL 2>> WATER <CONT POLLUTANT>. 

 

Some footwear has doubled in price. 

 

=N POUND <PRICE SOME FOOTWEAR> 

 

 BECOME <MULT N 2> SELF. 

 

Lamb is expensive meat. 

 

ALL LAMB <SUB A MEAT< COST 

 

 <MORE =N PENCE <<PRICE MEAN> ALL MEAT>> PENCE>>. 
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4.2.2A2 General Terms 

a. Absolute General Terms 

Absolute general terms admit the definite and indefinite article and the 

plural ending. The plural form is handled by the quantifier <MORE 1> unless 

the quantity is stated more explicitly. The indefinite is handled by the quantifier 

<EQUAL 1>. 

The definite article is used with a general term in order to describe a 

single object, rather than to name it as a singular term does. Whenever the 

definite article is used PIDGIN attempts to replace the description by a singular 

term with the same reference; this is usually known from the context otherwise 

the definite article would not have been used. However, there are cases where 

it is used when the object is only potentially knowable, for example, "the oldest 

man in England", "the winner will receive £10". In these cases PIDGIN 

automatically creates a new concept which refers to the individual described 

and the descriptive information is used to define it. For example, "the oldest 

man" would produce: 

XYZ <SUB A MAN>. 

 

XYZ <AGE =N YEAR <<OLD MAX> ALL MAN>>. 

Many general terms also double as mass terms, for example "Mary had 

a little lamb" is ambiguous because "lamb" may refer to a single infant sheep or 

to a part of that single, scattered object consisting of lamb meat. The two views 

can be resolved by introducing a concept, such as MEAT, when the PIDGIN 

equivalent of the two meanings becomes: 

MARY TRANSFER SOME MEAT <PART SOME LAMB>  

   A PLACE MOUTH. 

 

MARY <POSS LAMB <WEIGHS <LESS =N KILO 
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  <<WEIGHT MEAN> ALL LAMB>> KILO>>.  

The central feature of a general term, that of dividing its reference 

forms the basis of what in PIDGIN is equivalent to the idea of a variable in 

many computer programming languages. For example, the general term "man" 

divides its reference among all male homo-sapiens.  

The equivalent PIDGIN concept MAN divides its reference (in the 

PIDGIN sense of the word, see Section 2.1.1) in an analogous way. At any 

moment the PIDGIN concept may have as its reference some single example of 

an individual man or class of men. This corresponds to the ability to say "the 

man" to refer to the one man that is being talked about. Thus the PIDGIN 

group concept MAN may have as its reference any of the entity concepts JOHN, 

BILL or JOE and so on, which have been stated as being entity concepts for 

which MAN may be substituted. It may also have as its reference any of the 

group concepts, say FATHER, BACHELOR or UNCLE that have been stated as 

being group concepts for which MAN may be substituted.  

b. Relative General Terms 

A relative general term is true of one thing with respect to another, for 

example "part of", "bigger than", and "brother of". In PIDGIN these are 

translated into a structure with the form A <R B> where A and B are the things 

related by R. Relative terms can be paired off into mutual inverses so that if R1 

is the inverse of R2 then A <R1 B> says the same thing as B <R2 A>. For 

example: 

WEIGHS <INVERSE WEIGHT> . 

 

 JOHN <WEIGHS 60 KILO>. 

 60 KILO <WEIGHT JOHN>.  

 

BELONG <INVERSE POSS>. 

 JOHN <POSS FIDO>. 

 FIDO <BELONG JOHN>.  
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OLD <INVERSE AGE>. 

 A PERSON <AGE 20 YEAR>. 

 20 YEAR <OLD A PERSON>. 

The relation of a relative term is sometimes used derelativised in 

English as an absolute term true of anything x if and only if the relative term is 

true of x with respect to at least one thing. Thus "part", "brother" and 

"container". In PIDGIN a relation can be used as a nominal if it is being talked 

about as a relation (as in the: first line of each example above), but in the 

usual case of a derelativised term it will be expanded into the relation and two 

general concepts of the correct category, for example: 

brother 

A MAN <BROTHER A PERSON>. 

 

 

part 

 

AN OBJECT1 <PART AN OBJECT2>. 

 

Composite absolute general terms can be constructed from a relative 

and a singular term, for example: 

a brother of John 

 

 A MAN <BROTHER JOHN>. 

 

a broken part of machinery 

 

 A [BROKEN] OBJECT <PART A MACHINE>. 

c. Relative Clauses 

A relative clause is usually an absolute term and is formed by 

substituting a relative pronoun such as "which", "who", "whom" or "that" for a 

singular term in what would otherwise be a complete sentence. It is true of just 

those things which would yield a true sentence if put in place of the relative 

pronoun. Relative clauses are adjectival but in PIDGIN they are translated into 

separate conceptions just as they are if used as unrestrictive clauses which are 
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stylistic variants of co-ordinate sentences anyway. In many 

translation schemes the regimentation of relative clauses into "such that" 

clauses is suggest ed and this can be regarded as forming the first part of the 

conception split. For example: 

A car which John bought is in the garage. 

 

becomes: 

A car such that John bought it is in the garage. 

 

which in PIDGIN is: 

A PERSON PASS A CAR SELF JOHN 

 

 AND THE CAR <IN GARAGE>.  

4.2.2A3 Singular Terms 

 

A singular term admits only the singular grammatical form and no 

article and it names or purports to name a single object. In PIDGIN they 

become entity concepts.  

The problem of ambiguity of singular terms, for example the fact that 

the word "John" refers to millions of people, is not a deep problem, merely a 

question of resolving the ambiguity and careful distinction between the English 

name "John" and the internal concept JOHN so that multiple uses of "John" are 

distinguished internally, say JOHN1 JOHN2 and so on, or any equivalent scheme.  

Singular terms can be obtained from general terms by the use of the 

demonstrative particles "this" and "that". By this means single objects can be 

specified without the need for naming .though, as was pointed out in the last 

part, PIDGIN .does carry out an automatic internal naming process. This is 
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done so that extended discourse about a demonstrative singular 

term can be collated under a single concept. New singular terms can be 

introduced this way by using the "is" of identity, for example "This river is the 

Thames". 

Mass terms also generate singular terms with the demonstratives, for 

example "this water", "that sugar". Thus  

THISWATER <SUB A WATER>.  

that is, the new concept THISWATER is identical to one part of the 

single, scattered water stuff.  

The reference of demonstrative singular terms varies from occasion to 

occasion like the reference of the indicator words ("I", "you", "now", "here", 

"today" and so on) and PIDGIN handles them in the same way, that is by 

resolving the reference at translation time so that the PIDGIN deep structure 

produced does not contain any such unstable singular terms.  

The definite article can be regarded as a weakened demonstrative 

particle used to form singular descriptions, and further the pronouns can be 

regarded as short singular descriptions ("he" = "the man", "she" = "the 

woman", "it" = "the thing"). In PIDGIN demonstrative singular terms, singular 

descriptions and pronouns are all translated into concepts that refer uniquely 

and stably to the current reference of the unstable English phrase.  

Indefinite singular terms are formed from general terms with the 

indefinite article, for example "I saw a lion." This is translated to A LION in 

PIDGIN, that is, anyone member of the class of lions. Note the difference 

between this and the translation of "the lion" as ALBERT, where ALBERT is the 

particular single individual lion referred to. Also note the repeated use of the 

terms and the translation: 
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John saw a lion and Bill saw a lion. 

 

JOHN PERCEIVE A LION1 AND BILL PERCEIVE A LION2 

 

John saw the lion and Bill saw the lion. 

 

JOHN PERCEIVE ALBERT AND BILL PERCEIVE ALBERT.  

Note the use of concept subscripts in the first example to allow the 

particular lions seen to differ. It is because of this that pro nouns (always 

definite) cannot simply be regarded as standing in place of (can be totally 

replaced by) their antecedent, consider: 

John saw a lion and Bill saw it. 

 

JOHN PERCEIVE A LION1 AND BILL PERCEIVE A LION1.  

This time the same subscript is repeated to force the lions to be the 

same individual.  

Indefinite singular terms can also be formed from other particles, such 

as "every", "some", "each" and "any". The translation of these terms together 

with pronouns and especially with negation is erratic and will not be discussed 

here.  

Abstract singular terms that purport to name qualities or attributes 

have long been a source of confusion. Every general term can be regarded as 

delivering an abstract singular term usually constructed by suffixing "-ness", "-

hood" or "-ity". In PIDGIN they are avoided where possible by reducing them to 

concrete objects together with the single group of abstract objects, the 

numbers. For example:  

Humility is rare. 

 

<MORE ALL [HUMBLE] PERSON> PERSON.  
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That is the number of people is more than the number of 

humble people.  

 

4.2.2A4. Composite Terms 

 

The composition of the equivalent of singular and general terms to form 

new terms is the source of all PIDGIN's concepts. This part considers the rules 

that govern the composition. Composite general terms can be formed by 

adjoining one general term attributively to another, thus "red house", "iron 

bar". In PIDGIN if the term has been specified as ATTRIBUTE it can be used as 

a qualifier: 

A [RED] HOUSE. 

 

AN [IRON] BAR. 

 

otherwise it must be linked using a relative term. A composite general 

term is true of just those things that both components are true of. If the 

relationship is obscure but significant then the general relation MOD is used. 

This can be read as "modified by" or "to do with", for example: 

Water rat  A RAT <MOD A WATER>. 

 

Fire Hydrant A HYDRANT <MOD A FIRE>. 

 

Steam engine AN ENGINE <MOD SOME STEAM>. 

Syncategorematic adjectives, that is those that cannot stand on their 

own as terms, are like adverbs in that they can be attached to terms to form 

further terms. In PIDGIN they are not treated in the same depth as in English. 

It is hoped that they can usually be handled in  
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PIDGIN directly (for example, adverbs of time and place 

and some of manner) or paraphrased or ignored or left for future analysis (for 

example, adverbs involving analogy such as "majestically"). General terms can 

also be obtained by combining a relative term and a singular term ("brother of 

John") as well as. by combining a relative term with a plural general term 

("benefactor of refugees"). These composite general terms can be made into 

singular terms using "this", "that", or "the" and these can be combined with 

relative terms to form general terms again. For example: A part of the skin of a 

red apple 

 

AN OBJECT <PART A SKIN <PART A [RED] APPLE»  

 

In PIDGIN the combining of concepts is controlled by the previous 

occurrence of a similar combination. Unless the user has priority 100 a 

combination will not be set up unless some combination already present in the 

memory can be substituted for it. For example, if the combination:  

A [PLEASURE] PERSON 

 

has already been set up in the memory then the following combinations 

will be allowed: 

[HAPPY] JOHN 

 

A [SAD] CHILD 

 

A [JOYFUL] WOMAN 

 

(assuming PLEASURE can be substituted for HAPPY, SAD and JOYFUL, 

and PERSON for JOHN, CHILD and WOMAN). But the following will not be 

allowed: 
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A [HAPPY] BOOK 

 

A [SAD] TREE  

4.2.2B Ambiguity and Vagueness 

 

The way in which language is learnt, by a process of piece-meal 

education arid induction, naturally leads to vagueness. Singular terms can be 

vague as to the spacio-temporal limits of the thing named; for example "the 

South Downs" specifies a particular range of hills but their precise limits are 

vague. General terms can be vague as to their extension, what counts as one, 

and as to the boundaries of each one. For example, "mountain" is vague as to 

when a hill becomes one, and thus how many there are, and as to the 

boundaries of each one. PIDGIN requires rules if such vagueness is to be 

resolved. For example, if told the heights of a number of hills and mountains 

and which are hills and which mountains PIDGIN will be unable to classify any 

new feature simply given its height. But if a rule is set up that defines a 

mountain as always being over 1000 metres and a hill as always being under 

then it will be able to deduce the class of a new feature from its height. 

Another group of words that vary in meaning are words such as "big - 

small", "hot - cold", "high - low", "heavy - light" and so on. These words are not 

really ambiguous or vague but dependent on the governed term. In this sense 

they can be regarded as a type of syncategorematic adjective. In PIDGIN they 

Could be handled by either making them absolute or by making them clearly 

relative or by treating them as inseparable from the nominal they qualify. For 

example, "heavy" and "light" could be handled by substituting the actual weight 

to enable absolute comparisons to be made between say a "heavy woman" and 

a "light man". However, such a translation requires a lot of knowledge about 

the average and the distribution and it is extremely difficult to quantify for pairs 
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such as "smooth" and "rough". The second method is to try to place 

every term on a relative rather than an absolute scale. Thus: 

heavy man is heavier than heavy woman is heavier than average 

man is heavier than average woman is heavier than light man is 

heavier than light woman.  

This method does not suffer from the disadvantage of quantification but 

it does require extensive knowledge of the relation between completely 

different terms if they are to be compared (for example, to judge that a heavy 

mouse is in fact lighter than a light elephant). If different terms are not to be 

compared then the final method can be used and PIDGIN merely needs to 

know:  

heavy X is heavier than average X is heavier than light X.  

 

The method used is a variation of the last method that allows some 

comparison. All such relative adjectives are related to the average, which is 

regarded as the sum divided by the total number. For example: 

a heavy elephant 

 

AN ELEPHANT <WEIGHS <MORE =N KILO 

 

 <<WEIQHT MEAN> ALL ELEPHANT>> KILO>.  

 

a smooth skin 

A SKIN <ROUGHNESS <LESS =N AMOUNT 

 <<ROUGH MEAN> ALL SKIN>> AMOUNT>. 

The knowledge can be made absolute by specifying the weight of the 

average elephant or by specifying what amount (arbitrary) constitutes the 

average skin roughness. For example: 

3000 KILO<<WEIGHT MEAN> ALL ELEPHANT>. 

 

70 KILO«WEIGHT MEAN> ALL MAN>.  

would allow average (and thus heavy and light) elephants and men to 

be compared. And:  
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ALL SKINWOMAN <SUB A SKIN>. 

 

ALL SKINRHINO <SUB A SKIN>.  

 

10 AMOUNT<<ROUGH MEAN> ALL SKINRHINO>. 

 

1 AMOUNT<<ROUGH MEAN> ALL SKINWOMAN>.  

The skin of an individual is substitutable for the appropriate skin class, 

for example: 

Mary has smooth skin. . 

ALL SKINMARY <SUB A SKINWOMAN><BELONG MARY> 

 

 <ROUGHNESS <LESS 1> AMOUNT>.  

The problem of comparing more or less than average quantities 

depends on the distribution. There are many ways of incorporating this 

information, for example, specifying the standard deviation and assuming more 

than average means more than the standard deviation from average. Another 

method would be for the system to do a curve fit on all the information in 

memory and work out the standard deviation. However, these methods are not 

ideal, it requires a more detailed analysis of the interaction between the 

systems knowledge of the world and facts about the world, and how this could 

best be fitted into a statistical framework in which the system could perform 

useful interpolations and extrapolations. Sentence truth does not usually hinge 

on vagueness because people make sure it does not. For example, the height of 

a mountain is not vague, but the area is, for the very reason that it is the 

height that is of most interest to people when mountains are discussed. One 

area that does encounter vagueness with respect to sentence truth is deciding 

on records, the longest river, largest mountain and so on. On such questions 

PIDGIN relies on the simple numeric comparison of the in formation it has been 

given. Ambiguity is illustrated by the fact that a black feather is clearly light 

and clearly not light. Vagueness is associated with the exact placing of 

boundaries, ambiguity with striking divisions. Usually ambiguity is resolved by 

context, either within the sentence, within the broad context of discourse, or 
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within the even broader context of social conventions and natural 

inclinations. The broader the context the more knowledge required to resolve 

the ambiguity and the more difficult it is for an automatic translation scheme to 

incorporate and make use of the necessary knowledge. This problem has been 

considered by Schank and others and is not discussed here.  

The division between ambiguity and generality is usually resolved by 

considerations of etymology, intuitive sense and grammatical function. 

However, in a deep structure representation other considerations apply and a 

term is usually regarded as ambiguous if its incorporation as a single concept in 

the deep structure would require different interpretations from context to 

context. Thus the word "hard" as applied to chairs and questions would usually 

be regarded as generally true of both but in the deep structure two separate 

concepts would be used. Ambiguity arises with composite terms where a 

syncategorematic: reading is possible, for example, "a poor artist". It also 

occurs with the seemingly innocuous indefinite article:  

i) A lion likes red meat.  

ii) A lion escaped.  

which leads to examples involving the plural:  

iii) I like lions.  

iv) I hear lions.  

v) Lions are rare.  

vi) I hunt lions.  

vii) I am hunting lions.  
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Examples (ii), (iv) and (v) are straight-forward, "a" means 

a single unspecified thing, plural means more than one and plural in subject 

position without an article refers to the class of lions, the problems associated 

with these are discussed earlier. The other examples have a common thread, 

they all involve dispositions. How this might be used to translate the examples 

is discussed in the next section. 

4.2.3 Sentence Analysis 

The definition of what is and what is not a sentence will not be 

attempted. Sufficient to say that a sentence translates into one or more PIDGIN 

statements. Even elliptical sentences such as "Yes." or "The pawn." are 

translated into complete conceptions. This section discusses those sentences 

that alter the concept structure of the system and some special aspects of the 

translation problem. The translation of more general sentences is relegated to 

the discussion of a few examples in the next section.  

 

4.2.3A. Predication 

 

The basic combination of two terms at the sentence level is that of 

general and singular terms in predication: <singular-term> is a <general-

term>. The sentence is true or false according as the general term is true or 

false of the thing, if any, to which the singular term refers. The particular form 

of a predication depends on the grammatical category of the general term. If it 

is an adjective the article is omitted and if it is an intransitive verb the article 

and "is" are omitted: 

John is a boxer. 
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John is big. 

 

John sings.  

However, there are mechanisms in English for converting the verbal 

and adjectival forms to substantival form, namely the "-er" suffix and the use 

of the class name. For example, to translate the two non-standard cases above 

into a standard form: 

John is a big person. 

 

John is a singer. 

This enables predication to be translated into the PIDGIN deep 

structure: 

ALL group-concept <SUB A group-concept>. 

 

or 

entity-concept <SUB A group-concept>.  

Mass terms can occur on either side of the predication. In the 

predicative position normally occupied by a general term a mass term is treated 

as referring to a portion of the stuff the mass term refers to ("That puddle is 

water."). In the other position it is treated as referring at once to all the 

scattered portions ("Water is a liquid."). Predication is the mechanism whereby 

new concepts are described to the PIDGIN system. In general the new concept 

occurs to the left of the SUB relation, an old concept or combination of concepts 

to the right and the complete conception has a modality of DEFN (see Division 

2.3D). If this process is followed back then it can be seen that every concept on 

the right must have occurred in some previous definition on the left. Obviously 

all concepts "are eventually reduced to some initial group of concepts, namely 

those built into PIDGIN itself (see Section 2.1.1). Appendix II shows a typical 
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sequence of definitions for building up a basic set of concepts from 

those built into PIDGIN.  

4.2.3B Identity 

 

Identity is also expressed in English by "is" in sentences with the form: 

<Singular-term> is <singular-term>. The old philosophical dilemma - "to say of 

two things that they are identical is nonsense, and to say of one thing that it is 

identical with itself is to say nothing at all" (Tractatus 5.5303, Wittgenstein 

1922) is resolved in PIDGIN by distinguishing between the object an individual 

concept refers to and the definite description of that object in terms of other 

concepts. The system may contain any number of different descriptions of the 

same object each associated with a different concept. The fact that two 

descriptions describe the same object  

is a statement of experience not something inherent in the descriptions 

themselves (for example "The evening star is the morning star"). When PIDGIN 

encounters any singular description describing an object not previously 

encountered then a new concept is formed and a predication is made between 

the new concept and the general term corresponding to the singular 

description. Thus: 

The barn behind my house. 

 

MYBARN <SUB A BARN <BEHIND MYHOUSE>>.  

The barn behind your house. 

YOURBARN <SUB A BARN <BEHIND YOURHOUSE>>.  

The two concepts are assumed to refer to different barns. However, if 

PIDGIN is told they are the same: The barn behind my house is the barn behind 

your house. 

MYBARN <EQUIV YOURBARN>. 
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then it will make the two entity concepts equivalent. The 

result of this equivalencing will be to use only one of the concepts in the future 

and to combine all the statements concerning each concept.   

4.2.3C. Time 

Time plays a large part in the structure of any sentence in English 

because it is necessary to give every verb some tense. The complex grammar 

of tenses can be greatly simplified in the deep structure by the use of explicit 

time, period and interval specifiers in the modifier of the statement. These 

specifiers are placed among the modifiers of the complete statement because it 

is only an event that can have a time and a duration and a PIDGIN statement is 

a description of an event. The temporal qualifiers "now", "then", "before t", "at 

t", and "after t" are systematised by translating them onto an absolute time 

scale. The time of day and the date (relative to the year 0 A.D.) are used to set 

up an absolute time scale stretching into the past and future. "now" moves 

along this time scale so that at each new moment it occupies a new position. A 

point on the time scale is expressed as a sequence of a number of each of the 

time units. Points on the scale can be associated with events and terns, "John's 

birthday", "last week", "the end of the year", "Christmas". When the term 

refers to a recurring event the term is kept in order to retain the ambiguity of 

reference, if it refers to an absolute event the term is kept in order to retain the 

description associated with the name of the event, otherwise it is translated to 

an absolute time point.. The various tenses are handled by the above time 

specifier, plus a period modifier to say whether it is an EVENT and if it is 

whether the sentence refers to the START, WAX, CONTINUING, WANE or STOP 

aspect of the event or to the complete event. If it is an EVENT then the interval 

modifier can be used to state the length of time occupied by the specified phase 

of the event. Other modifiers related to tense are concerned with intent and 
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conditionality. The following examples show how these modifiers 

can be combined: 

I am walking 

 CONTINUING <TIME t2>  

 

I walked. 

 EVENT <TIME <LESS t2>> 

 

I will walk. 

 INTEND <TIME <MORE t2>> 

 

I can walk. 

 CAN <TIME t2> 

 

I started walking yesterday. 

 START <TIME t1> 

 

I will stop walking this evening. 

 STOP <TIME t1> 

 

I will have been walking two hours. 

 CONTINUING <TIME <MORE t2>><INTERVAL 2 HOUR>  

where t1<t2<t3 and NOW=t2.  

4.2.3D. Ambiguity 

Sentence ambiguity is the central problem of machine translation. The 

problem is handled in recent question-answering systems (Winograd 1971, 

Schank 1970a) by writing translators that make use of the know ledge stored in 

the systems data-base together with the systems deductive capabilities. An 

example requiring the resolution of ambiguity is discussed in the next section. 

As well as the ambiguity of terms (see Division 4.2.2B) there can be 

ambiguities of grouping and scope. Grouping can best be illustrated by the use 

of brackets, for example: 

(boy scouts) fish. 

(boy) scouts (fish).  

 

((pretty poor) girl) guides (light torch holder)). 

(pretty (poor (girl guides))) light (torch holder). 
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etc. The bracketing in each case can usually be determined 

by the surrounding context plus more general knowledge. However, many 

examples are simply ambiguous and cannot be bracketed in anyone way but 

such examples do not often occur in conversation. Other true ambiguities are 

illustrated by "big European butterfly" in which the syncategorematic adjective 

"big" may include "butterfly" or "European butterfly". Such ambiguities can be 

resolved only by knowing common usage or by further conversation. Indefinite 

singular terms also give rise to problems of ambiguity concerned with scope, 

for example: "Each thing that glisters is not gold." If the scope of "each thing" 

is the whole sentence then the assertion denies that gold glisters, if the scope 

does not include the negator then the assertion is true because it is then 

equivalent to "it is not the case that everything that glisters is gold". Once 

again the ambiguity is resolved by convention. In PIDGIN the two possible deep 

structures would be: 

A [GLISTER] THING <SUB A GOLD> [NOT]. 

 

ALL [GLISTER] THING <SUB A GOLD> [NOT]. 

 

Further ambiguity of scope occurs with "every" and "any" and in this 

case convention rules that "every" requires the smallest scope and "any" the 

largest. So: 

I do not know any poem. 

 

means 

I know no poem. 

 

but 

I do not know every poem. 
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means 

It is not the case that I know every poem.  

4.2.3E Opacity  

 

A purely referential position in a sentence is one in which any term 

designating the same object may be substituted without altering the truth value 

of the complete sentence. This is called substitutivity of identity and it is true 

for most of the terms in the examples given.; The most obvious case where it 

fails is with quotation, for example:  

"Jekyll" has six letters.  

the singular term "Hyde", although it refers to the same person, can 

not be substituted without destroying the truth of the sentence. PIDGIN 

handles quotation by keeping the quoted text in character form so substitution 

is prevented in all circumstances.  

Contexts in which substitutivity of identity may not occur without the 

possibility of change of truth value are called referentially opaque, as opposed 

to those in which it may occur which are called referentially transparent. It is 

not necessary to discuss the problems that this subject brings with it because 

of the simplicity of PIDGIN statements compared with the subtlety of English. 

The following brief description shows how it is possible to handle the problem 

within PIDGIN.  

Many verbs are associated with the relation between minds and the 

world, and with the internal models in minds. For example, "believe", "seek", 

"say", "wish", "fear" and so on. These -have been recognised as requiring 

special treatment with respect to the substitution of terms in the c1auses they 
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govern and they have been christened propositional attitudes. All 

these propositional attitudes translate into one or other of the mental acts in 

PIDGIN, COGITATE and TRANSMIT. Each of these acts takes a complete 

statement as its object. If the subject of the resulting conception is the PIDGIN 

system (SELF) then concepts in the object statement can be freely substituted 

for any other concepts that the system knows are equivalent. This is because 

the statement forms part of the system itself and can be treated like any other 

part. If the subject is not the system however then it is reasonable that 

assumptions should not be made about the knowledge contained in the mind of 

the subject. For example: John believes Jekyll is dead. 

 

JOHN TRANSMIT< [DEAD] JEKYLL> MEMORY SELF.  

 

That is John can transfer the thought "Jekyll is dead" from his memory 

into his consciousness. If the conception: 

JEKYLL <EQUIV HYDE>. 

is known to PIDGIN this does not imply that John also knows this fact 

so it follows that it cannot be deduced that "John believes Hyde is dead". A 

similar justification can be found for the other propositional attitudes and the 

result is that the PIDGIN system has a working mechanism for deciding when a 

substitution can be made.  

4.2.4 Examples of Analysis  

 

The following examples are taken from Schank (1973) but have been 

modified in order to illustrate the features of PIDGIN.  
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1) "I want to go to the park with the girl."  

 

The initial internalisation and explication has already been discussed. 

The explication process look for word endings and function words in order to 

discover the main subject and verb and any direct object(s). So by the time 

analysis begins these sentential features have been marked. The dictionary 

forms the basis of the analysis as it is this that contains the mapping from 

sentential-level words to the conceptual-level concepts. In the above example 

the verb "want" is found and looked up in the dictionary giving three possible 

structures: 

i) STATE 

 A LIFE DO AN ACTION2 CAUSE A PERSON1 BECOME 

 

  [PLEASED] SELF. 

ii) TRANSITIVE 

 A PERSON PASS AN OBJECT A PERSON A PERSON1 

 

  CAUSE A PERSON1 BECOME [PLEASED] SELF. 

iii) TRANSITIVE 

 

 A PERSON2 TRANSFER SELF A PLACE4 A PLACE5  

  <LOC A PERSON1> CAUSE A PERSON1 BECOME 

  [PLEASED] SELF.  

Because the verb in the above example is a state verb only the first 

entry is applicable. Therefore another complete conception is required as the 

object of the act DO. The next verb in the sentence is looked up in the 

dictionary giving:  
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i) INDIRECT 

 

AN ANIMAL1 TRANSFER SELF A PLACE4 A PLACE5  

As the conceptual subject of the second verb is "I" the concept ANIMAL 

is replaced by SELF. As the entry is a single conception the DO act is replaced 

by the conception rather than making it the object of DO. The next part of the 

sentence "to the park" is recognised as a possible case, "park" is looked up in 

the dictionary and found to mean PARK, which is a group concept for which 

PLACE may be substituted. The singular description is replaced by an entity 

concept (say, PARKX) and placed in the destination (because of "to") part of the 

act. This gives:  

SELF TRANSFER SELF A PLACE P ARKX 

 

 CAUSE SELF BECOME [PLEASED] SELF.  

The final part of the sentence is interesting because of the many ways 

in which it can be used:  

"with+term"  

i) term is object of the THROUGH statement (Schank's instrumental 

case), e.g.: 

I hit the boy with a cane. 

 

ii) term is an additional term of the conception, e.g.: 

I went with the girl to the park.  

iii) term is an attribute of the immediately preceding term, e.g.: 

I hit the boy with long hair.  

iv) term is an attribute of the act, e.g.: 



 
236 

I hit the boy with vengeance.  

The possibilities are checked in the order given until a suitable one is 

found. In this case the first is ruled out because the only THROUGH statement 

involving SELF TRANSFER is SELF MOVE and the object must be a body part, 

which "girl" is not. The next case is checked and found to be satisfied, girl can 

be another actor for the act TRANSFER.  

If the third possibility had been checked it would only succeed if the 

system knew about a particular park which had a girl in it. This brings up the 

question of handling the definite article and other anaphoric references such as 

pronouns. In all these cases the analyser uses the memory to try to find the 

entity concept referred to, in this case a park. This is done by using the context 

information contained in the reference of concepts, thus if a park had been 

referred to in the immediately preceding discourse then the group concept 

PARK would still have as its reference the entity concept which is the name of 

the particular park under discussion. If this is not the case then the most recent 

statements must be searched for some mention of a park and if none is found 

then more information is looked for in the sentence, in this case for example 

"with the girl" would be taken as a definition of the park described and the 

complete memory would be searched for such a park. Pronouns are resolved by 

searching for the most recent suitable object or person in the sentence being 

analysed or in previous recent statements. The final analysis will be: 

 

[SELF GIRL] TRANSFER SELF A PLACE PARKX 

 

CAUSE SELF BECOME [PLEASED] SELF. 

 

Note that SELF as subject refers to the PIDGIN system but SELF in the 

object position refers to the complete subject. 
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2) "I saw Birmingham flying to Edinburgh." 

The second example is described to indicate how syntactic ambiguity is 

resolved. This has always been a problem with the traditional approach to 

syntax analysis because of the lack of semantic information. The sentence 

above is a poorly constructed English sentence because it is nearly always 

parsed incorrectly on first reading. However, as it can be understood a 

conversational system should also be able to analyse i to When "see" is looked 

up in the dictionary the only suitable (transitive) entry gives:  

SELF TRANSMIT BIRMINGHAM EYE SELF 

 

THROUGH SELF PERCEIVE BIRMINGHAM.  

The next verb ("fly") is' looked up in the dictionary but it is not clear 

what the subject is. In such cases the last actor is taken, in this case 

"Birmingham". However, the system cannot make Birmingham fly because 

Birmingham is a place and fly requires an animal as subject (more specifically 

FLY requires BIRD,PLANE,INSECT,PILOT or PASSENGER as subject, but 

Birmingham is none of these). The choice of actor is therefore rejected and the 

next rule is tried which selects, the next actor which is SELF. Selecting this 

actor meant crossing back over the main verb and another rule states that if 

this happens then the conception being generated is a time conception that 

modifies the original conception. This actor choice succeeds and assuming SELF 

is a PASSENGER and filling in the destination ("to place") gives:  

SELF TRANSMIT BIRMINGHAM EYE SELF 

 

 THROUGH SELF PERCEIVE BIRMINGHAM, 

 WHILE SELF TRANSFER SELF A PLACE EDINBURGH 

 THROUGH A PLANE TRANSFER SELF A PLACE EDINBURGH.  

3) "The old man's glasses were filled with sherry." This example is 

given in order to show how the knowledge possessed by the system can be 

used by the analyser to resolve semantic ambiguity. 
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The sentential analysis of this sentence will find it is passive 

and so the preceding actor will be made the object. If "by" is found then the 

following noun group forms the subject but in this case there is no subject. 

The word "glasses" is looked up in the dictionary and found to be 

ambiguous between "drinking vessel" (GLASS) and "spectacles" (SPECTACLE). 

Further, the ambiguity is not resolved by its qualifier ("old man's"). As the 

definite article is used the system tries to resolve the "glasses" referred to by 

searching the memory. If no such information is found a choice could be made 

immediately that the most likely choice is SPECTACLE because they are more 

often associated with old men than GLASS. Alternatively the choice can be left 

until more information is available from the analysis of the rest of the sentence. 

The main verb "fill" requires a LIQUID as object of a TRANSFER act and a 

CONTAINER as the destination. This enables the first definition of "glass" to be 

chosen and the final statement becomes:  

A PERSON TRANSFER SOME SHERRY A CONTAINER 

   SOME 

 

GLASS <BELONG JOHN>.  

where JOHN is the entity concept corresponding to the singular 

description "the old man".  

4.3 The Synthesis of English 

 

The synthesis of English can vary from the random generation of 

semantically meaningless but syntactically correct sentences by trivial 

algorithms, through slot-and-filler techniques such as that used by Winograd's 

system, to the complete generation of semantically correct sentences that 

convey sensible information in the context of a conversation. In terms of 

PIDGIN the problem divides into two parts, the generation of a statement that 
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conveys the required information and the translation of that 

statement into English. 4.3A. Generating Statements A statement may be 

"generated" simply by retrieving a matching statement from memory. This is 

the way in which an answer to a user's question is generated, the question 

forms the basis of the answer. Thus it is the user's ability to generate 

statements that is being utilised by PIDGIN. Because PIDGIN may reply 

elliptically the answer may bear little resemblance to the question at the 

English level, for example:  

Who went to the park? 

 

John.  

but at the level of the deep structure involved the two are equivalent. A 

second point at which statements must be generated is when the system 

wishes to inform the user that some problem has arisen, such as an 

unresolvable reference, an ambiguity, an inconsistency or an unknown word. In 

some of these cases the statement comes from parts of the user's sentence and 

in others from the memory, these parts are then put together to form a 

statement which is output to the user. This system is a type of slot-and-filler 

algorithm but at the level of the deep structure. The basic forms of the possible 

statements the system might need to make to the user ("error messages") are 

stored in the memory and when used they have the appropriate parts filled in 

with the particular relevant structures.  

The third type of generation arises in the mode of working in which the 

system automatically generates new statements from old and then asks the 

user if they are true by outputting them as questions. Another type of 

generation is discussed by one of Schank's associates (Goldman 1975). In this 

the basis of the output is past input which has been translated into the deep 

structure in memory. The point of this exercise is to illustrate that the system 
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has "understood" the input because the output is a sensible 

paraphrase of the input. Because PIDGIN always outputs from its deep 

structures this always occurs. Finally, it would be easy to randomly generate 

statements using the concepts and conceptual knowledge in the memory. This 

could per haps be done by randomly choosing a conception structure from the 

verb-act dictionary, filling in a number of the actors with concepts of the correct 

type, quantifying and qualifying these actors by choosing quantifiers, attributes 

and specifiers that may modify the concept chosen and finally choosing a 

selection of statement modifiers. The output of such a procedure would be a 

semantically meaningful sequence of unconnected sentences.  

4.3B Translating Statements into English 

The synthesis of statements into English is an interesting problem as a 

good synthesiser should not output any more information than is necessary for 

the user to understand the statement. It should be fluent for example in its use 

of pronouns and idioms and it should be able to translate deep structure 

statements into the most natural phrasing and word order. The details of the 

formation of a syntactically correct sentence using the analysis rules and the 

dictionary in reverse can be found in Schank (1969b) and Goldman (1975). The 

ability to use pronouns and omit information known by the user is one of the 

good features of Winograd's outputting system. In PIDGIN the translation of 

deep structures into English is divided into three steps. The first, most complex, 

step is called synthesis and consists of searching the dictionary for the English 

words that are equivalent to the various parts of the deep structure. These 

words are then assembled into the shallow-structure buffer using the language 

dependent rules of analysis in reverse. The second step, called amalgamation, 

substitutes idioms and generates the surface structure which the final step, 
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called actualisation, translates into a character stream suitable for 

output to the user.  

4.4 Conversation 

Conversation contains many features and is associated with many 

problems that have not been discussed. A conversation is usually about some 

topic, that is, people usually talk for a reason. This fact is made use of in 

conversation by leaving certain things unsaid because they are obvious to both 

parties. However, when one party is a computer this raises problems concerned 

with how much the system needs to know before it can understand typical 

typewritten communication. In order to answer this question a lot more needs 

to be known about the form of such conversations. Although AI workers 

generally assume that typical typewritten communication reads like children's 

story books there is evidence that this is just not the case. Work done by 

Chapanis (1975) indicates that when two people communicate to solve a 

problem the language used is a long way from the English that most of us 

believe we use. The results of Chapanis are so relevant to the problems faced 

by conversational computer systems that they are worth describing in detail 

with respect to PIDGIN. Chapanis set out to investigate how two people 

communicate to solve a simple problem when various combinations of 

communication channel are available, for example, voice only, voice and video, 

voice and typewriting, typewriting only and so on. He discovered some 

interesting relationships between the time taken to solve the problem and the 

channel available but the interesting result from the point of view of PIDGIN is 

a transcription of a typical conversation between two people using only a 

typewriter to communicate and trying to solve a simple problem. The problem 

was for one person to assemble a piece of equipment guided only by 
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instructions from the other person who had the equipment 

assembly manual but could not see the equipment. The following is part of the 

communication: 

goaheaddoyouknowhowto put this togteher 

 

ill tryits a trash toter ill type you the directions ok 

put axle thru 38th holes from outside 

38th holes/?? yes 

put 1 handlebar on back of each outer frame line up bol t 

holes 

what does outer frame look like? its like a (W) 

put bottom frame to outer frame on front+rear of outer 

frames . 

okuse 1+12 bolts 

are your parts lab led by lettrs??? 

no ok the thing looks like a cart with room for 2 trash 

cans the part that looks like this(XX)goes on the bottom 

+the 2(W)parts goon the sids 

put male ends? into female ends 

what does that mean? i dont no 

it looks like 3(U)s 

what? 2(U)s go into each other then theyare put on other 

u+put on W put top frame to front of outer fr.+to 

handlbar 2 1/4 bolts put center support fro inside topfr. 

use 2 1/4 boo thru center of top fro put 2 1/12 bolts 

thrub center of side fr., bottomfr. 2 bottom of center 

support fro 

ok put on wheels 3 spoks on outside put on hubcap with 

hammer put on handgrips DO ALL THESE STEPS FOR BOTH SIDES 

ok?????  

The above conversation is obviously between two inexperienced typists 

but it was found that inexperienced typists took only about 3% longer than 

experienced typists. This was because only about one third of the time was 

spent communicating but it does illustrate that little was lost because of typing 

errors. The above conversation illustrates this, not once is a spelling mistake, 

ambiguity or abbreviation questioned. The only mistake that may have been 

due to typing problems that was questioned was the omission of the oblique in 

"3/8" in the third line. The other person queried this and surprisingly the person 

confirmed the mistake and yet the conversation was continued without further 

discussion. In terms of a PIDGIN type of system a number of points arise:  
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i) Typing mistakes are common, such as missing spaces, 

misspelling of words, typing the wrong character.  

ii) Spelling mistakes are common, this includes not only mistakes 

such as spelling "together" as "togteher" but also spelling "know" as 

"no".  

iii) Punctuation is omitted or used to convey specific information. The 

only use of the full stop in the above example is to terminate an 

abbreviation and this is not done consistently.  

iv) Abbreviations are invented and used as required. Thus one person 

abbreviates "frame" to "fr." without explanation.  

v) The typewriter is fully utilised to convey information, for example 

the shape of the letters is used to convey pictorial information and 

although the first time this is done it is enclosed in brackets "(W)" this 

convention is not maintained consistently. An interesting combination of 

pictorial with linguistic information is the construction "3(U)s".  

How can a computer system cope with these types of real 

conversational problem. They can be simplified to:  

i) Any syntax driven system will not be suitable. English as it is used 

seems to avoid every rule at some time. Hopefully, a system, such as 

PIDGIN, which only uses syntax to guide it in its generation of deep 

structures will be able to cope with this.  

ii) The system must cope with spelling mistakes, words run together, 

abbreviations, and words misused. This requires a much more careful 

analysis of the input at the character level making full use of conceptual 
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information. It means that the itemisation of words cannot 

be separated from the complete analysis.  

iii) Analysis must proceed largely from left to right as it cannot be 

assumed that sentences will be terminated in any way.  

iv) Pictorial information must be capable of being picked out from 

within the English input. 

All the above points show that conversational problem solving systems 

have a long way to go before they can cope with the full horrors of the real 

world.  

So far no overall controlling program has been described at the English 

level corresponding to the PIDGIN driver at the PIDGIN level. This is because 

the role of such a program has intentionally been kept to a minimum so that as 

much as possible of the control is retained by the statements and rules in the 

memory. In this way the overall control remains flexible and capable of being 

altered and extended by the user. If the control program were incorporated at 

the ABC level it could not be altered by conversation at the English level. 

However, most of the detailed control is below the level that can be specified in 

PIDGIN (and thus at the English level). The way in which this is partially 

overcome is by means of special concepts that are recognised by certain 

commands (see Division 2.3B) and cause special action to be taken, for 

example: 

SELF TRANSMIT A THOUGHT USER HERE. 

 

will call the Analyser to read and translate a sentence and then bind the 

concept THOUGHT to that sentence. And: 
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SELF TRANSMIT A THOUGHT HERE USER. 

 

will call the Synthesiser to translate the PIDGIN statement which is the 

reference of THOUGHT and then output it to the user. Both of these examples 

demonstrate how a built-in ABC program can be called from the PIDGIN level, 

hut obviously these programs are fixed and cannot be amended using PIDGIN. 

If this is compared with the way that people appear to handle the same 

problem then an interesting possible future extension to the system can be 

imagined. For example, consider how an adult learns a foreign language. 

Initially the vocabulary and syntax rules are learnt and are internally run 

through every time a sentence is constructed but slowly the process seems to 

become more automatic as if the rules were built-in and being used at a level 

below that of ratiocination. It is as if people can use a complex English 

description of what is required but as it is used it becomes translated into a 

lower level unverbalised but equivalent form. In PIDGIN terms it is as if a 

complex set of PIDGIN rules (whose evaluation corresponds to ratiocination) 

could" be translated into an equivalent ABC program. Further, people seem to 

be able to examine themselves carrying out these low level programs (for 

example, problem solving) and generate approximately equivalent English level 

programs that can be conveyed to others. It is interesting that these two 

abilities do not themselves seem to be capable of examination suggesting that 

there is an even-: lower level of program. The investigation of how these 

abilities might be defined in terms of PIDGIN and ABC would seem to be most 

fruitful.  
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CHAPTER 5 SUMMARY  

 

PIDGIN is a programming language for developing conversational 

problem-solving systems. It has a syntax based on an extended and 

rationalized version of Schank's conceptualizations and a semantics derived 

from PLANNER and CONNIVER. A system developed using PIDGIN is thus better 

suited than a system based on Schank's static notation because the dynamic 

interpretation of PIDGIN has been fully incorporated into the language. It is 

also better than a system, such as that of Winograd, that uses PLANNER as its 

deep structure because PLANNER was designed as a programming language for 

people, not as a deep structure for natural language. The structure of PIDGIN 

enables assertions, rules and heuristics to be incorporated in the system to 

form a powerful deductive system. PIDGIN can also use 'this information to 

form schemes and plans necessary for the solution of complex problems. It can 

at the same time keep track of what it is doing, and as all the information is in 

the form of PIDGIN statements it can be used to answer questions about how 

and why it has carried out any particular action. It has also been shown how 

PIDGIN can be used to generate hypotheses from the knowledge in its memory 

and carryon a-conversation in which such hypotheses are checked with the 

user. The limitations of PIDGIN have been mentioned all through the thesis. 

The first and major requirement is an implementation of the complete PIDGIN 

system so that problems raised can be investigated and used to improve 

PIDGIN. The following list briefly describes some of the main areas that such a 

system could be used to investigate: 

i) The translator briefly described in this thesis could be 

implemented in order to investigate the possibility of translating the 
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type of real human communication described at the end of 

the last chapter.  

ii) PIDGIN could be extended to investigate the type of belief 

structures described by Colby (1973) and Abelson (1973).  

iii) The problem solving ability of PIDGIN could be extended by 

studying the ways in which a forward tree search and static evaluation 

function could be derived from the linguistic deep structure.  

iv) PIDGIN's learning ability could be extended to cover a scheme 

involving regulated weights as well as an investigation of the more 

difficult problem of generating new pattern-matching rules.  

v) The ability to generate extended discourse on a single topic could 

be studied working from a PIDGIN base. In this context a topic seems 

to be similar to the type of scheme generated during problem solving. 

Perhaps there is a close analogy between a conversation concerned 

with solving a problem and the problem solving process itself.  

vi) There are many other types of deep structure that could profit 

ably be combined with the PIDGIN linguistic deep structure. For 

example, pattern Matching structures of the type described in 

connection with the "view", arithmetic and mathematical deep 

structures as simply exemplified by the quantifier expressions of 

PIDGIN, and deep structures corresponding to the notation of logic. The 

important thing with all of these is to find some smooth transition 

between them and the linguistic deep structure which should form the 

common link between them all (although a better but more difficult 

approach would be to regard them all as variations on some more basic 

structure, such as ABC).  
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vii) As was pointed out at the end of the last chapter the 

translation between PIDGIN and ABC is an important step in extending 

the system to a point where all further extensions to the system can be 

performed at the English level. 

 

An investigation of the use of PIDGIN in a practical problem area would 

be a good way to bring together the diverse and vague requirements of such a 

system as well as forming a basis for further extensions. Such a problem area 

needs to be some area that provides simple, ill defined problems that could 

usefully benefit from being put into a rigid algorithmic framework.  

______________________________ 



 
249 

APPENDICES 

 

 

 

 

APPENDIX I - IMPLEMENTATION  

APPENDIX II - THE KNOWLEDGE BASE  

APPENDIX III - BIBLIOGRAPHY 

 



 
250 

APPENDIX I IMPLEMENTATION 

 

A. ABC Implementation 

 

ABC (Associative Backtrack Computer) was designed and developed in 

order to simplify and rationalize the implementation of PIDGIN. 

A brief description of ABC is given in Section 2.1.1 where it is clear that 

PIDGIN is an extension of ABC. Because ABC forms the core of PIDGIN and 

because ABC contains some features which are of interest in their own right this 

Appendix describes ABC in some detail. However, this Appendix is not a 

reference manual for ABC nor does it describe every feature in the language.  

ABC is currently implemented in the programming language POP-2 

(Burstall197l). It could be more efficiently implemented in a system 

programming language but it would take about a year to implement and would 

not be as flexible. The basic ABC system was implemented in a few weeks using 

POP-2. It should be noted, that even if implemented in an assembler language 

it would be very inefficient running on present day computers because it is a 

recursive hierarchy language (Stansfield 1972) not a simple recursive language 

and because it requires an associative memory in order to implement its data-

base search efficiently. ABL (Associative Backtrack Language) is the assembler 

language of ABC. Its basic syntax is described in Section 2.1.1. In order to 

program in ABL a computer terminal is required that has at least the' twenty six 

letters of the alphabet, the ten digits and characters for the opening and closing 

application, band and class brackets, the orderer, the negator, the decimal 

point and sub-ten. This form of ABL is called Strict-ABL or SABL and it has a 

syntax which can be simply described as words, numbers and expressions 
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enclosed in any of the three types of brackets (application, band 

and class) to form an expression. However, SABL is not a convenient language 

in which to program because of the large number of nested brackets usually 

required. Therefore, an extended version of SABL called Meta-ABL or MABL was 

developed. MABL requires extra characters to represent a terminator and 

combiner (described later) and it is designed to make us of any further 

characters that are available in order to allow expressions to be abbreviated. 

 

1. The ABC Primitives 

 

There is a special type of expression called an instruction, it is an 

application whose first expression is a primitive (one of 42 special concepts) 

and whose other expressions are called arguments. The 42 primitives currently 

defined are listed below with their required arguments and a brief description of 

what they do. In the description of the arguments "expr" stands for 

"expression", "aspect" is a concept being used in a special way, alternative 

arguments are enclosed in round brackets and optional arguments are followed 

by "=" and any default value :  

1 ASPECT concept aspect=REF  

returns the expression associated with the concept-aspect pair. Always 

succeeds.  

2 ASSEMBLE  

returns the SABL expression corresponding to the next MABL 

expression from the current input stream. Fails if an assembler error is 

detected.  
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3 ASSOC expr (concept band) aspect=REF  

The expression is associated with the concept-aspect pair (or with 

every such pair if the second argument is a band of concepts). Always 

succeeds.  

4 BAND expr (concept band) aspect=REF  

like ASSOC except that the expression is added to the band which is 

currently associated with the concept-aspect pair. If the pair is not 

associated with a band then a band is created consisting of the first 

expression and the current association. Always succeeds.  

5 BYE expr= [ABC RESTARTED] 

saves the complete current system work space on a disc file and 

returns to the operating system level. When restarted the expression is 

printed. Always succeeds.  

6 CLASS expr (concept band) aspect=REF 

same as BAND but a class is formed. 

7 CLEAR expr aspect=REF 

every concept in the expression is associated with its concept aspect 

pair. 

8 CLEARABC 

re-initia1ises the ABC system and prints: 

[ABC CLEARED.] 



 
253 

no aspect associations are altered. 

9 COMBINE expr1 expr2, aspect=SUB 

the two expressions are compared (see JOIN) and if this succeeds then 

if a sub-expression of expression1 is substitutab1e for the 

corresponding concept in expression2 then it is associated with the 

concept-aspect pair. Succeeds and fails as for JOIN. It is the basis of 

binding in PIDGIN.  

10 DIV (number concept) (number concept)  

the result is the first number divided by the second. If either argument 

is a concept then the reference of the concept is used. Will fail if either 

argument is not a number (or concept whose reference is a number).  

11 DUMP level:::3 (number expr) =9999 outfile=CUOUT  

 

prints details of the current associations (amount of detail is specified 

by level) either from the complete data-base (when number specifies 

the number of associations to be printed) or from the specified 

expression to a specified disc file (outfile) or to the current output file 

(CUOUT, see TO) if omitted. 

12 ERROR expr number=100 

equivalent to <RISE number expr FAIL> (see RUN and RISE). 

13 FAIL expr= 

evaluates the optional expression, if present, and fails. 
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14 FAILIF expr  

evaluates the expression and fails if the expression succeeds, succeeds 

if the expression fails.  

15 FREEZE (concept band) aspect=REF 

fixes the current expression associated with the aspect of the concepts 

so that future attempts to alter the association are ignored (see 

THAW). Always succeeds. 

16 FROM (infi1e band) outfi1e= 

makes the current input stream the file specified by the concept infile. 

If infi1e is either USER or HERE then input is taken from the terminal. If 

the first argument is an ordered band then this is regarded as the 

current input stream. If the optional outfi1e argument is specified then 

everything read from the input stream is printed on the output file (see 

TO). The current input stream is made the reference of the concept 

CUIN.  

17 GET (number concept) expr 

the number (or reference of the concept) is used to index the 

expression. For example, if the number is n then the value is the nth 

sub-expression of the expression. The evaluation will fail if the first 

argument is not a number or is a number out of range.  

18 GT (number concept) (number concept) 

Succeeds if the first number (or reference of the concept) is greater 

than the second, otherwise it fails.  
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19 JOIN expr1 expr2= aspect=SUB 

The first argument is called the question and the second the candidate. 

This primitive succeeds if the question matches the candidate using the 

specified aspect. The following are the rules of matching: if the 

question is the same as the candidate it succeeds. if the question, 

candidate or aspect is the concept  

NIL then it fails. 

if the question is one of the following concepts and the candidate the 

specified expression then it succeeds:  

EXPR expression (always succeeds) 

APPL application  

BAND band (ordered or unordered)  

CLASS class (ordered or unordered)  

CHOICE band or class  

ORDERED ordered band or class  

CONCEPT concept 

SYMBOL special character  

GROUP concept whose reference is not ENTITY  

ENTITY concept whose reference is ENTITY  

FROZEN frozen concept (see FREEZE)  
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NUMBER number  

INTEGER integer number  

REAL non-integer number  

PRIMITIVE concept which is one of the 42 primitives 

 

ITEM concept or number  

if the question is a concept then it succeeds if  

 the aspect of the question matches the candidate  

 using the TRANS aspect of the aspect.  

if both are applications then it succeeds if each  

 sub-expression of the question matches the corresponding  

 sub-expression of the candidate.  

if both are bands or both are classes then it  

 succeeds if corresponding (if both are ordered)  

 or any (if either or both are unordered)  

 sub-expressions match.  

if the question is a class then it succeeds if any  

 sub-expression of the question succeeds.  

if the candidate is a band or class then it succeeds  
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 if all (band) or at least one (class)  

 sub-expression matches the question.  

if none of the above are true it fails.  

If the candidate expression is omitted then this primitive will match the 

question with every expression currently associated with a concept-

aspect pair.  

20 LT (number concept) (number concept) 

the inverse of GT 

21 MAKE expr aspect=REF  

the result is an expression which is the same as the first argument 

except that every concept is replaced by its aspect (unless it is frozen). 

Always succeeds.  

22 MAX band 

 

the result is the number or reference of a concept that is the largest in 

the band. 

23 MIN band 

inverse of MAX. 

24 MONITOR outfile 
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sets up an output monitor stream to which all monitor 

information (see TRACE) will be written. Outfile is the output file name, 

or USER or HERE to have the information written to the terminal. 

25 OK expr= 

evaluates the optional expression, if present, and then succeeds.  

 

26 POP concept aspect=REF  

if the aspect of the concept is an ordered band or class then the first 

sub-expression is returned as value and the rest of the band or class is 

associated with the aspect of the concept. If the band or class is 

unordered then a pseudo-randomly, selected sub-expression is 

returned as value and the aspect is not altered. If the aspect is 

anything else then that is returned as value and the aspect is not 

altered. The primitive always succeeds.  

27 PROCESS expr 

The expression is evaluated and the primitive succeeds or fails as the 

expression succeeds or fails.  

28 PROD band 

the result is the product of all the numbers (which may be the . 

reference of a concept) in the band, it always succeeds.  

29 QUOTE expr 

the expression is returned as value. Always succeeds.  
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30 READ 

reads and returns as value the next expression from the current input 

stream.  

31 READABL 

reads and returns as value the next MABL unit from, the current input 

stream (used by ASSEMBLE). 

32 READS 

reads a sequence of expressions from the current input stream 

terminated by the character ".", "!" or "?" and returns all the 

expressions as an ordered band.  

33 REPEAT expr 

repeatedly evaluates the expression until it fails, when the primitive 

succeeds.  

34 RESUME 

an instruction with this as primitive is created by the RUN and RISE 

primitives. It should not be used directly by the user as its arguments 

are related to the internal state of the ABC processor. If a RESUME 

instruction is evaluated then the system will return to the state it was 

in immediately after the instruction was created.  

35 RISE leve1=1 expr=NIL (OK FAIL) =OK (concept band) =  

For details of the theory behind RUN and RISE see the report by J 

Stansfield (1972). In some programming languages the facility these 

provide is called "backtrack programming". RISE saves the current 
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state of the ABC system as a RESUME instruction and then 

associates this with the reference of the concept CONTINUE. It then 

returns to the specified level, or a higher level, and exits with the 

specified value (the second argument), either succeeding (if the third 

argument is OK) or failing (if FAIL).  

The fourth argument specifies one or more concepts whose references 

are to be reset to their current value if the RESUME instruction is 

evaluated.  

36 RUN expr level 

evaluates the expression at the specified level. If an expression is 

evaluated at level n then if a RISE is evaluated at level m while 

evaluating that expression then it will exit from the RUN if m ~ n, 

otherwise the RISE will continue on past the RUN. That is, the higher 

the RUN level the more levels of RISE it will stop. In practice this 

usually means that the more "important" a program the higher will be 

the level at which it runs other programs. The ABC driver (see later) 

will stop all RISEs and so can be regarded as RUNning the user's 

program at an infinite level. User's errors (using the ERROR primitive) 

usually RISE at level 100 and ABC system errors at levels between 200 

and 300 depending on the severity. Therefore, by running a program at 

level 300 the user will be able to trap all errors.  

37 SIZE expr 

its value is the number of top level sub-expressions in its argument. 

Always succeeds.  

38 SUB (number concept) (number concept) its value is the second 

argument subtracted from the first. Always succeeds.  
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39 THAW (concept band) aspect=REF 

unfreezes the expression currently associated with the aspect of the 

one or more concepts specified so that it may again be altered. Always 

succeeds.  

40 TO outfile 

alters the current output stream so that output is directed to the 

specified file. If outfile is USER or HERE then output will be directed to 

the terminal. The current output stream will be made the reference of 

the concept CUOUT. Always succeeds.  

41 TRACE primitive 

causes the specified primitive to print out a trace print whenever it is 

used. If TRACE is applied to the same primitive a second time the trace 

is switched off and so on. The details printed by the trace mechanism 

depend on the trace level. The trace level is an integer between zero 

and ten that is the reference of the concept TRACE. Trace printing 

varies between none at all (level zero) and all primitives evaluated with 

their arguments plus full details every time a RESUME instruction is 

created plus full details of all association changes, resetting of 

associations on failure, new concepts read, reordering of unordered 

bands and classes and machine utilisation statistics (level ten). 

42 WRITE expr= 

writes the expression to the current output file. If the expression is 

omitted then a newline character is written. Always succeeds.  

As well as the above primitives there are a number of concepts whose 

reference is se t by the sys tem:  
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CONTINUE the last RESUME instruction created by RISE.  

ARGS the arguments of the application currently being evaluated 

formed into an ordered band.  

CUIN   the current input stream.  

CUOUT the current output stream. 

VALUE the result of the last evaluation. 

2. The ABC Driver 

 

When ABC is started it interacts with the user according to an algorithm 

called the driver. The driver first calls CLEARABC then prints the 

message : 

[MABL STARTED.] 

 

and then calls ASSEMBLE. If this fails because of an assembler error 

then :  

[MABL ERROR.] value 

 

is printed and the driver is restarted. Otherwise, the value of the 

assembly is processed by calling PROCESS. If the evaluation fails then: 

[TOP FAIL.] level value  

is printed and the driver restarted, otherwise the ASSEMBLE primitive is 

recalled. The above description of the driver corresponds to the 

following ABL program: 

<ASSOC 
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 [<REPEAT 

  [<CLEARABC> . 

  <WRITE [MABL STARTED.]>. 

  <REPEAT 

  [( <ASSEMBLE><FAIL <WRITE [MABL ERRORJ>> ) 

  ( <PROCESS VALUE> <FAIL <WRITE [TOP FAIL.]>>)J> 

]] DRIVER> .  

When ABC is running it is continually re-ordering all the unordered 

bands and classes according to the results of the processing. The processor 

orders unordered bands so that the member that has failed most often in the 

past is processed first, the second most often next and so on. Classes are 

ordered so that the member processed first is that which has succeeded most 

often in the past. Further, when a band or class is searched for a matching 

member then it will also be automatically re-ordered to speed up future 

processing. This process of learning from the results of evaluating will improve 

the efficiency of ABC when it is simulated on a single processor computer 

assuming that there is a relationship between separate evaluations or searches 

of the same band or class.   

3. The MABL Assembler 

 

The MABL assembler language is described because all the following 

examples are written in MABL. It was developed in order to reduce the number 

of nested bracketed expressions required by Strict-ABL and so improve the 

clarity of programs written for ABC. The syntax of a MABL statement is the 

same as that of a SABL expression except that the following construction is also 

allowed:  

op1 expr1 op2 expr2 , expr3 ... stopper  

where op1 is an optional monadic operator, op2 is an optional dyadic 

operator and stopper is either the orderer (".") or the terminator (";"). If the 

dyadic operator and the monadic operator are present then the monadic 
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operator is applied to expr1 and then the dyadic operator is applied 

to the result and expr2. The optional combiner (",") and its expression (expr3) 

may be followed by zero or more other combiners plus expression. The 

combiners are used to specify additional arguments for the dyadic operator, or 

if this is omitted for the monadic operator. The following are the initial 

operators : 

" QUOTE   - ASSOC 

 

! POP   * BAND 

$ WRITE   + CLASS 

/ ASPECT   = JOIN 

^ RISE   ? COMBINE 

\ RUN   : MAKE  

The following examples make the syntax clearer: 

 

MABL    SABL 

 

JOHN*NAME.  <BAND JOHN NAME> 

$/NAME.   <WRITE <ASPECT NAME>> 

$/x/!y;   <ASPECT <WRITE <ASPECT X>> 

       <POP Y>> 

MALE*PERSON,SUB. <BAND MALE PERSON SUB> 

4 ^ [NOT FOUND.] ,FAIL <RISE 4 [NOT FOUND] FAIL>  

[<READ> -ITEM.   <ASSOC [ <ASSOC <READ> ITEM> 

 /ITEM = !ARGS] -RD <COMBINE <ASPECT ITEM> 

      <POP ARGS>>] 

      RD> 

Note that the number of arguments taken by the operator is 

determined solely by the context of its use therefore the same operator symbol 

can be used in one place as a monadic operator and in another as a dyadic 

operator. A new operator symbol may be defined or an old one altered by 

associating the required primitive with the reference of the symbol. In fact the 

operators do not need to be symbols they can be any concept, including the 

primitive themselves. For example WRITE can be defined as an operator by: 

WRITE-WRITE. 
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After this WRITE can be used as an operator:  

MABL   SABL 

 

WRITE [I KNOW.].  <WRITE [I KNOW]>  

 

In MABL the ordered and unordered version of the band and class are 

distinguished not by different types of brackets (because of limitations in the 

character set of most terminals) but by the use of the orderer (".") symbol. If 

any sub-expression of a band or class is terminated by the orderer then that 

band or class is ordered otherwise it is unordered. 

 

The escape symbol ("%") must precede any symbol or operator that is 

being mentioned to stop it being used.  

B. The PIDGIN Implementation  

PIDGIN is implemented in MABL (see last division) but some of the 

more basic PIDGIN routines have been rewritten in POP-2 and added to the 

ABC system as primitives in order to improve the efficiency of the PIDGIN 

system. 

 

The following is a list of the major areas of the system that have been 

implemented: i) The complete ABC system, including the MABL assembler. 

ii) The PIDGIN interpreter. 

 

iii) The PIDGIN assembler (Input to Strict PIDGIN). 

iv) The PIDGIN disassembler (Strict to Input PIDGIN). 
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v) The PIDGIN resolver (matcher, binder and deductive 

apparatus). 

vi) The PIDGIN driver. 

 

The following is a list of the major areas of the systems that have not, 

or have not fully, been implemented: 

i) Translation between PIDGIN and English. 

 

ii) The VIEW. 

iii) Scheming and Planning. 

 

The following MABL programs describe part of the PIDGIN system, 

although much of the logic shown is now implemented in POP-2: 

[<REPEAT 

 

 ([<READTHOUGHT> -THOUGHT. 

  ([/THOUGHT? MEMORY/CONNECTOR. $ [I KNOW.]] 

  [/THOUGHT * MEMORY, CONNECTOR. $ OK]) ] 

 [<READABL>-INSTR. <INSTR> ] 

  <ERROR [ILLEGAL PIDGIN STATEMENT.]>>> 

 $ [CHAT TERMINATED.] ]-CHAT.  

 

[<READACTOR> -SUBJECT. 

<OK READMODIFIER> -MODIFIER. <<READACT>. "BE) -ACT. 

<OK READACTOR> -OBJECT. 

<OK READACTOR> -SOURCE. <OK READACTOR>-DESTINATION. 

:" <ACT [SUBJECT OBJECT SOURCE .DESTINATION] 

MODIFIER>*CONCEPTION. 

[<OK READMODIFIER> -THMOD. 

 <OK READCONNECTOR> -CONNECTOR. 

 ([/CONNECTOR? /TERMINATORS. !CONCEPTION-THOUGHTJ 

 [ <READTHOUGHT> 

  ! CON CE PTI ON -CON. 

  :" <CONNECTOR THMOD CON THOUGHT> -THOUGHT.] 

 <ERROR [ILLEGAL PIDGIN THOUGHT. ]» ] 

]-READTHOUGHT.  
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[%. %1] -TERMINATORS.  

 

[MOVE PASS TRANSFER TRANSMIT] -TRANS ,SUB.  

 

[COGITATE IDENTIFY PERCEIVE] - TROW,SUB  

 

[BE BECOME DO TRANS TROW] -ACT,SUB.  

 

[<READ> 1 ACT/SUB] -READACT.  

 

[<OK READQUANTIFIER> -QUANTIFIER. 

 

<OK READATTRIBUTE> -ATTRIBUTE. 

 <<READNOMINAL> -NOMINAL. 

  [<<FAILIF. /QUANTIFIER=UNDEF>. 

   <FAILIF./ATTRIBUTE=UNDEF>> 

  <ERROR [ILLEGAL PIDGIN NOMINAL]>] ). 

 <REPEAT READSPECIFIER*SPECIFIER>. 

 :" <NOMINAL QUANTIFIER ATTRIBUTE SPECIFIER> 

] - READACTOR.  

 

[<READ> =% [ . 

 <REPEAT ( <READSPECIFIER> * SPEC. <READMOD> * MOD ». 

 <<READ> = %J. <ERROR [MISSING %J.]>.) 

 :"<MOD SPEC> 

]-READMODIFIER.  

 

[<READ> = % [. 

<REPEAT [<READ> -ITEM <FAILIF ITEM= %]>. 

ITEM*ATTRIBUTE]>. :ATTRIBUTE. 

]-READATTRIBUTE.  

 

[THE A AN SOME MOST EVERY ANY ALL] -QSPECIALS.  

 

[( [<READ> = %<. 

 <READ> 1 [MORE LESS EQUAL ABOUT]. VALUE-COMPARATOR. 

 <READACTOR> -QUANT. 

 <READ> = %>.] 

 [<READ> = % =. 

  ([ <READ> =NUMBER. VALUE-QUANT.  

   EQUAL-COMPARATOR.]  

  <ERROR [MISSING NUMBER]> )]. 

[<READ> ? /QSPECIALS. VALUE-QSPEC. 

: [QSPEC COMPARATOR QUANT.] ? [[THE EQUAL 1.][A EQUAL 1.] 

      [AN EQUAL 1.]  

      [SOME MORE 0.]  

      [MOST MORE [DIV ALL 2.].] 

      [EVERY EQUAL ALL.]  

      [ANY EQUAL ALL.]  

      [ALL EQUAL ALL.]]]  

[<READ> -NUMBER. VALUE-QUANT. EQUAL-COMPARATOR.]) 

:"<COMPARATOR QUANT> 

]-READQUANTIFIER.  

 

[<READ> = %<. 

 ([ <READ> = %<. 

  ([ <READ> -RELATION. 

   <READ> 1 [MAX MIN MEAN]. VALUE-RELMOD. 

   <READ> = %>. 
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   : [RELATION RELMON.] -RELMOD.]. 

   <ERROR [ILLEGAL RELATION MODIFIER.]>>] 

 

[<READ> -RELATION. 

<READACTOR> -ACTOR. <READ> = %>.]) 

:" <RELATION ACTOR> 

]-READSPECIFIER.  
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APPENDIX II THE KNOWLEDGE BASE  

A. Primary Knowledge 

The primary knowledge consists of those PIDGIN statements read in at 

priority 100 that determine the allowed form of all future statements. There are 

a number of predefined concepts which can be substituted for a variety of 

structures, for example, any nominal can be substituted for by the concept 

THING, any PIDGIN statement by STATEMENT, any action by ACTION, state by 

STATE and so on.  

ALL FORCE <SUB A THING>. 

 

ALL OWNER <SUB A THING>. 

ALL PLACE <SUB A THING>. 

ALL OBJECT <SUB A THING>. 

ALL BEING <SUB A THING>. 

ALL THINKER <SUB A THING>. 

ALL LIFE <SUB A BEING>.  

 

ALL BODYPART <SUB AN OBJECT>. 

ALL BODYP ART <PART A LIFE>. 

ALL MIND <SUB A PLACE>. 

ALL MIND <PART A THINKER>. 

MEMORY <SUB A MIND>. 

HERE <SUB A MIND>. 

ALL USER <SUB A MIND>. 

ALL VIEW <SUB A MIND>. 

SELF <SUB A USER>.  

 

ANY THING BE. 

ANY THING BECOME SELF. 

ANY BEING TROW ANY THING. 

ANY THINKER COGITATE ANY THOUGHT. 

ANY LIFE IDENTIFY ANY PATTEPN. 

ANY LIFE PERCEIVE ANY OBJECT. 

ANY LIFE PERCEIVE ANY OBJECT. 

ANY LIFE DO ANY THOUGHT. 

(ANY BEING ANY FORCE) TRANS ANY THING ANY THING2 ANY 

THING3. 

ANY LIFE MOVE ANY BODYPART ANY PLACE} ANY PLACE1. 

ANY THINKER PASS ANY OBJECT ANY OWNER1 ANY OWNER2. 

ANY FORCE TRANSFER ANY OBJECT ANY PLACE ANY PLACE . 

ANY THINKER TRANSMIT ANY THOUGHT ANY MIND1 ANY MIND2. 

ANY STATE SUGGEST ANY STATE. 

ANY STATE ENABLE ANY ACTION. 

ANY ACTION PRODUCE ANY STATE. 

ANY ACTION CAUSE ANY ACTION. 

ANY ACTION CAUSE ANY ACTION, THEREFORE ANY ACTION. 

ANY ACTION THROUGH ANY ACTION. 

ANY ACTION WHILE ANY ACTION. 
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ANY CONCEPTION IF ANY RULE. 

 

B. General Knowledge 

The following statements form part of the general knowledge base of a 

typical use of PIDGIN.  

ALL ANIMAL <SUB AN OBJECT>. 

ALL ANIMAL <SUB A FORCE>. 

ALL ANIMAL <SUB A LIFE>. 

ALL PERSON <SUB AN ANIMAL>. 

ALL PERSON <SUB AN OWNER>. 

ALL PERSON <SUB A THINKER>. 

ALL MAN <SUB A PERSON>. 

ALL WOMAN <SUB A PERSON>. 

BILL <SUB A MAN>. 

JOHN <SUB A MAN>. 

MARY <SUB A WOI1AN>. 

JILL <SUB A WOMAN>. ALL HAND <SUB A BODYPART>. 

ALL FOOT <SUB A BODYPART>. 

ALL SENSOR <SUB A MIND>. 

ALL EYE <SUB A SENSOR>. 

ALL EAR <SUB A SENSOR>. ALL DOG <SUB AN ANIMAL>. 

ALL CAT. <SUB AN ANIMAL>. 

ALL BOOK <SUB AN OBJECT>. ALL ALIVE <SUB AN ATTRIBUTE>. 

ALL DEAD <SUB AN ATTRIBUTE>. 

ALL HAPPY <SUB AN ATTRIBUTE>. 

ALL SAD <SUB AN ATTRIBUTE>. 

ALL COLOUR <SUB AN ATTRIBUTE>. 

ALL RED <SUB A COLOUR>. 

ALL BLUE <SUB A COLOUR>. ALL BIRTHDAY <SUB AN EVENT>. 

ALL HOUSE <SUB AN OBJECT>. 

ALL PARK <SUB A PLACE>. 

ALL INCH <SUB AN OBJECT>. 

ALL YEAR <SUB A TIME>. ALL BELONG <INVERSE A POSS>. 

ALL HEIGHT <SUB A MEASURE>. 

ALL AGE <SUB A MEASURE>. 

ALL OLD <INVERSE AN AGE>. =N INCH <HEIGHT AN OBJECT>. 

=N YEAR <OLD A LIFE>. 

A LIFE <AGE =N YEAR>. ALL [COLOUR] OBJECT. 

ALL [ALIVE] ANIMAL. ALL [DEAD] ANIMAL. 

ALL [HAPPY] THINKER. ALL [SAD] THINKER.  

 

<MULT M N> OBJECT1 <PART AN OBJECT3> 

 

 IF =M OBJECT1 <PART AN OBJECT2> 

 AND =N OBJECT2 <PART AN OBJECT >.  

 

A PERSON <POSS AN OBJECT> 

 ENABLE THE PERSON PASS THE OBJECT SELF A PERSONZ. 

 

A PERSON PASS AN OBJECT SELF A PERSON 
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 PRODUCE THE PERSON <POSS THE OBJECT> [NOT] 

  AND THE PERSON2 <POSS THE OBJECT>. # 

 

A PERSON DO AN ACTION 

 PRODUCE A [HAPPY PERSON2 

SUGGEST 

 THE PERSON DO AN ACTION 

  PRODUCE THE [HAPPY] PERSON.  

 

A PERSON DO AN ACTION PRODUCE A [HAPPY] PERSON 

AND THE PERSON DO AN ACTION2 PRODUCE A [SAD] PERSON3 

 SUGGEST 

 THE PERSON2 DO AN ACTION3 PRODUCE A [SAD] PERSON3.  

 

c. Specialist Knowledge 

 

The level of knowledge referred to as specialist will be indicated by 

showing some of the PIDGIN statements necessary to set up the EIKASIA chess 

system described in Chapter 3.  

Chapter 3 already shows a number of statements necessary for setting 

up EIKASIA and these all form part of the specialist knowledge concerned with 

playing the two kings, one pawn endgame. The following statements give some 

of the overall positive and negative states and a few simple rules for playing: 

A WIN <SUB AN ATTRIBUTE <FEEL 100 GOOD». 

 

A DRAW <SUB AN ATTRIBUTE <FEEL 0 GOOD». 

A LOST <SUB AN ATTRIBUTE <FEEL -100 GOOD>>.  

 

A [WIN] GAME IF A PAWN <ABOVE A7>. 

A [DRAW] GAME IF WPAWN <LOC BOD.  

 

AN [ADVANCE] PAWN ENABLE PAWNIDVE. 

A [SELFBLK ROOKPAWN] PAWN ENABLE LETPASS. 

A [ROOKPAWN] PAWN ENABLE WGOPAWN. 

SELF IDENTIFY * <WKING WPAWN BKING> 

 CAUSE PAWNMOVE . 

SELF IDENTIFY * <<A SQUARE BKING> 

   </{ SQUARE WPAWN> 

   <WKING 2 A SQUARE » 

 CAUSE SELF TRANSFER WKING A SQdARE4 A SQUARE3' 

 

A[CANRUN]PAWN ENABLE RUN.  
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In the above few statements PAWNMOVE, LETPASS, 

WGOPAWN and RUN are labels (concepts whose reference is used) that have 

previously been defined as the appropriate actions. Next a few of the more 

complex predicates and actions are described:  

i) CANRUN 

 

This predicate is the implementation of the "rule of the square". This 

rule says that if the black king lies within a square formed with the 

pawn in the bottom corner farthest from the king then the king will be 

able to reach the pawn before the pawn can be queened. The rule 

assumes that white has the move and that if the pawn is on the second 

rank then it is assumed to be on the third rank.  

A PAWN <WC 3 RANK> IF THE PAWN <LOC 2 RANK>. A [CANRUNJ 

PAWN IF 

 

THE PAWN <LOC =R RANK> <LOC =F FILE> 

AND BKING <ABOVE =R RANK> 

AND BKING <LEFT <SUB F <SUB 8 R»FILE 

OR BKING <RIGHT <ADD F <SUB 8 R»FILE.  

ii) NEEDSUP This predicate is the "rule of the square" for the white 

king, that is, it determines if the white king is in the promotion square of the 

white pawn and can thus reach the pawn before the pawn can reach rank 8. 

The predicate is the same as CANRUN with WKING substituted for BKING. For a 

description of the predicates ADVANCE, CAPTURE, SELFBLK and MATCH1 see 

Chapter 3.  

iii) WGOPAWN 

This action moves the white king to the square nearest to the white 

pawn:  
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SELF TRANSFER WKING A SQUARE1 A SQUARE2  

<BETWEEN [THE SQUARE,_WPAWNJ> 

iv) SUPPORT 

This action moves the white king to support the pawn. This is done by 

moving the king to the square which is between them (WGOPAWN), if this 

places the king next to the pawn then the action fails (automatically restoring 

the original position of the king) and the pawn is advanced instead 

(PAWNSTEP). WGOPAWN AND A SQUARE <BE1~EN [WKING WPAWNJ~ 

OR PAWNSTEP: SUPPORT.  

v) MANOEUV4 

This action is one of the set manoeuvres, it moves the white king 

towards square G7:-  

SELF TRANSFER WKING A SQUARE! 

 

 

A SQUARE2 <BETWEEN [THE SQUARE! G7J> 

 

: MANOEUV 4. 

 

 

MANOEUV5 is the same as MANOEUV4 but with BKING substituted for 

WKING. 

 

D. The Dictionary 

 

The following are some typical dictionary entries. The verbs are given 

first as they form the foundation of the translation scheme. In order to form a 
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valid PIDGIN statement from the lines below each should start with 

"$<DICT" and be terminated by">.". By convention the sentential subject is 

marked in the deep structure by the subscript 1, and any objects by subscripts 

2 and 3. ADVISE TRANSITIVE 

 

A PERSON TRANSMIT A THOUGHT SELF A PERSON2 

BE TRANSITIVE 

A THING1 <SUB A THING2> 

BE TRANSITIVE 

A THING1 <SUB AN ATTRIBUTE2> 

BE TRANSITIVE 

A THING1 <SUB A RELATION2> 

BELIEVE STATE 

A PERSONL [CAN] TRANSMIT A THOUGHT2 SELF MEMORY 

BELIEVE TRANSITIVE 

A PERSON TRANSMIT A THOUGHT SELF A PERSON 

CAUSE2THE THOUGHT BECOME SELF<LOC[PERSON1]MEMORY> 

BELIEVE TRANSITIVE 

A PERSON2 TRANSMIT A THOUGHT SELF A PERSON1 

CAUSE THE PERSON1 COGITATE THE THOUGHT 

AND THE PERSON1 TRANSMIT THE THOUGHT 

SELF MEMORY 

COMFORT TRANSITIVE 

A PERSON DO AN ACTION 

CAUSE AN [UPSET] PERSON BECOME [COMFORTABLE] SELF 

EAT TRANSITIVE 

AN ANIMAL TRANSFER A FOOD2 A PLACE STOMACH 

FILL TRANSITIVE 

AN ANIMAL1 TRANSFER A LIQUID A PLACE A CONTAINER2 

FLY INDIRECT 

A FLYER] TRANSFER SELF A PLACE4 A PLACES 

FLY TRANSITIVE 

A PILOT DO A PLAN 

CAUSE A PLANE2 TRANSFER SELF A PLACE4 A PLACES 

FLY INDIRECT 

A PASSENGER1 TRANSFER SELF A PLACE4 A PLACES 

THROUGH A PLANE TRANSFER SELF A PLACE4 A PLACES 

GET TRANSITIVE 

A PERSONI PASS A THING2 A PERSON A PERSON! 

GET TRANSITIVE 

A PERSON1 [CAN] TRANSMIT A THOUGHT A PERSON2 SELF 

GIVE DOUBLE 

A PERSON1 PASS A THING3 SELF A PERSON2 GO INDIRECT 

AN ANIMAL1 TRANSFER SELF A PLACE4 A PLACES 

GROW STATE 

A PERSON DO A PLAN 

[INTEND] CAUSE A PLANT BECOME [BETTER] SELF  

HAVE TRANSITIVE 

 

A PERSON1 TRANSMIT A THOUGHT2 MEMORY SELF 

HAVE TRANSITIVE 

A PERSON4 PASS AN OBJECT2 SELF A PERSON1 

HAVE TRANSITIVE 
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AN ANIMAL1 <HAS A SICKNESS2> 

HIT TRANSITIVE 

A PERSON1 [<DEGREE VIOLENT> ]TRANSFER AN OBJECT 

SELF A PERSON2 

KILL TRANSITIVE 

A PERSON DO A PLAN 

CAUSE AN ANIMALZ BECOME [DEAD] SELF 

LEARN INDIRECT 

A PERSONL TRANSMIT A THOUGHTZ SELF MEMORY 

LIKE TRANSITIVE . 

A PERSONZ DO AN ACTION 

CAUSE A PERSON! BECOME [PLEASED] SELF 

LOVE TRANSITIVE 

A PERSON COGITATE A PERSON. 

CAUSE A PERSON! BECOMEZ[LOVE] SELF 

MOVE TRANSITIVE 

A FORCE1 TRANSFER AN OBJECT2 A PLACE4 A PLACE1) 

PONDER TRANSITIVE 

A THINKER1 COGITATE A THOUGHT 

PUNCH TRANSITIVE . . 

. A PERSON1[ <DEGREE VIOLENT> ] MOVE A FIST SELF AN 

OBJECT2 

RECOGNISE TRANSITIVE 

A PERSON1 IDENTIFY AN OBJECTZ 

REMEMBER TRANSITIVE 

A PERSON1 TRANSMIT A THOUGHTZ MEMORY SELF 

SEE INTRANSITIVE 

A PERSON1 [CAN] TRANSMIT A THOUGHT SELF MEMORY 

SEE TRANSITIVE 

AN ANIMAL1 PERCEIVE AN OBJECTZ 

TELL TRANSITIVE 

A PERSON1 TRANSMIT A THOUGHT SELF A PERSON2 

THREATEN TRANSITIVE 

A PERSON TRANSMIT 

<A PERSON2 DO A THOUGHT CAUSE A PERSON1 DO 

AN ACTION [INTEND] CAUSE THE PERSONZ 

BECOME [HURT] SELF> 

SELF A PERSON 

THROW TRANSITIVE 2 

AN ANIMAL TRANSFER AN OBJECTZ SELF A PLACE4 

THROUGH THE ANIMAL! MOVE HAND A PLACES A PLACE6 

WALK INDIRECT 

AN ANIMAL TRANSFER SELF A PLACE4 A PLACES 

THROUGH THE ANIMAL1 MOVE 2 FOOT A PLACE6 A PLACE] 

WANT STATE 

A LIFE DO AN ACTION2 

CAUSE A PERSON1 BECOME [PLEASED] SELF 

WANT TRANSITIVE 

A PERSON PASS AN OBJECT A PERSON A PERSON 

CAUSE A PERSON1 BECOME [PLEASED] SELP 

WANT TRANSITIVE 

A PERSON2 TRANSFER SELF A PLACE4 A PLACES<LOC A PERSON1> 

CAUSE A PERSON1 BECOME [PLEASED] SELF 

WONDER INDIRECT 

A PERSON1 COGITATE A THOUGHT2  

 

THE DETERMINER A THING 

A DETERMINER A THING 

SOME DETERMINER SOME THING 
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ALL   DETERMINER  ALL THING 

PAWN  NOUN   A PAWN 

KING  NOUN   A KING 

TREE  NOUN   A TREE 

ON   PREPOSITION  A THING <ABOVE A THING2> 

BY   PREPOSITION  A THING <LOC A THING2>  

WHITE ADJECTIVE  A [WHITE] THING 

HAPPY ADJECTIVE  A [HAPPY] PERSON 

WHERE QUESTOR   A THING <LOC A THING2> 

WHY  QUESTOR   A THINKER COGITATE A SCHEME 

HOW  QUESTOR   A THINKER COGITATE A PLAN  

WHEN QUESTOR  A THINKER DO A PLAN 
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